Skip to main content
Log in

Soil Respiration and Biogenic Carbon Dioxide Sink in the Territory of Russia: An Analytical Review

  • Genesis and Geography of Soils
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Studies on the assessment of soil respiration and ecosystem CO2 sink in the territory of Russia are reviewed over the period since the adoption of the United Nations Framework Convention on Climate Change (Rio de Janeiro, 1992). The first estimates of total soil respiration in the entire territory of Russia, made in 1995 to 1998, amount to 3.1 and 4.3 Gt C per growing season and per year, respectively. On average, soil CO2 efflux over the cold season (November–March) accounts for 20–30% of annual efflux. The contribution of heterotrophic respiration (R H ) to the total soil respiration (R S ) may reach 30–70%, depending on ecosystem type. Despite differences in methods used to measure R H , the results obtained by different authors vary within a relatively narrow range, from 2.9 to 3.5 Gt C/year at an uncertainty level of about 20%. The soil cover of Russia (11.7% of the global land area) accounts for 6.3% of global soil CO2 efflux. The data on ecosystem CO2 sink are widely scattered among publications. Estimates of carbon balance differ depending on approaches and methods used to determine its individual components and the level of uncertainty in the results. However, most of them confirm the main conclusion: the territory of Russia with its forests is an absolute CO2 sink with a potential of 200 Mt C/year. This conclusion has been corroborated in the absolute majority of studies performed by Russian and international research teams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Bazilevich, Biological Productivity of the Ecosystems of Northern Eurasia (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  2. N. I. Bazilevich and L. E. Rodin, “Productivity and cycle of elements in natural and cultivated phytocenoses,” in Biological Productivity and Cycle of Elements in the Plant Communities (Nauka, Leningrad, 1971), pp. 5–32.

    Google Scholar 

  3. P. Yu. Voronin, E. I. Efimtsev, A. A. Vasil’ev, O. S. Vatkovskii, and A. T. Mokronosov, “Projective chlorophyll content and biological diversity of vegetation in general botanical-geographic zones of Russia,” Fiziol. Rast. 42, 295–302 (1995).

    Google Scholar 

  4. Second Assessment Report on Climate Change and Its Consequences in the Russian Federation (Rosgidromet, Moscow, 2014), pp. 18–36.

  5. V. N. Grabovskii, D. G. Zamolodchikov, G. N. Kraev, and N. V. Zukert, Climatogenic and Anthropogenic Modifications of Biospheric Functions of Boreal Forests and Arctic Ecosystems of Russia (Moscow, 2015) [in Russian].

    Google Scholar 

  6. I. V. Yevdokimov, A. A. Larionova, M. Schmitt, V. O. Lopes de Gerenyu, and M. Bahn, “Determination of root and microbial contributions to the CO2 emission from soil by the substrate-induced respiration method,” Eurasian Soil Sci. 43, 321–327 (2010).

    Article  Google Scholar 

  7. G. A. Zavarzin, “Introduction,” in Global Changes of the Environment and Climate (Moscow, 1999), pp. 11–16.

    Google Scholar 

  8. G. A. Zavarzin and V. N. Kudeyarov, “Soil as the key source of carbonic acid and reservoir of organic carbon on the territory of Russia,” Herald Russ. Acad. Sci. 76, 12–26 (2006).

    Article  Google Scholar 

  9. D. G. Zamolodchikov, “Carbon consumption by Russian forests: activation of national discussion about role of forests in Paris Agreement,” Scientific Workshop “Role of Forests in the Paris Agreement,” August 8, 2017 (Moscow, 2017) [in Russian]. http://cepl.rssi.ru/wp-content/uploads/2017/08/HД_20170808_Зaмoлoдчикoв.pdf.

    Google Scholar 

  10. D. G. Zamolodchikov, M. P. Gitarskii, A. V. Shilkin, A. S. Marunich, D. V. Karelin, V. G. Blinov, and A. I. Ivashchenko, “Monitoring of cycles of carbon dioxide and water vapor in the Taezhnyi Log site (Valdai National Park),” in Fundamental and Applied Climatology (Rosgidromet, Moscow, 2017), Vol. 1, pp. 54–68.

    Google Scholar 

  11. D.G. Zamolodchikov, V.I. Grabovskii, and G.N. Kraev, “A twenty year retrospective on the forest carbon dynamics in Russia,” Contemp. Probl. Ecol. 4, 706–715 (2011).

    Article  Google Scholar 

  12. D. G. Zamolodchikov and G. N. Korovin, “Biogenic carbon fluxes in Russian tundra,” in Global Changes of Environment and Climate (Moscow, 1999), pp. 146–162.

    Google Scholar 

  13. D. G. Zamolodchikov, G. N. Korovin, and M. P. Gitarskii, “Carbon budget in monitored forests of Russian Federation,” Lesovedenie, No. 6, 23–34 (2007).

    Google Scholar 

  14. D. G. Zamolodchikov and O. V. Chestnykh, “The Paris Agreement about reduction of emissions of greenhouse gases and adaptation in forestry,” Seminar “Optimization of Protection and Use of Russian Forests as an Element of National Contribution to the Paris Agreement” (Center of Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, 2016) [in Russian].

    Google Scholar 

  15. D. G. Zamolodchikov, V. I. Grabovsky, P. P. Shulyak, and O. V. Chestnykh, “The impacts of fires and clearcuts on the carbon balance of Russian forests,” Contemp. Probl. Ecol. 6, 714–726 (2013).

    Article  Google Scholar 

  16. A. S. Isaev and G. N. Korovin, “Carbon in forests of Northern Eurasia,” in Global Changes of Environment and Climate (Moscow, 1999), pp. 63–95.

    Google Scholar 

  17. A. S. Isaev, G. N. Korovin, V. I. Sukhikh, S. P. Titov, A. I. Utkin, and A. A. Golub, D. G. Zamolodchikov, and A. A. Pryazhnikov, Ecological Problems of Carbon Dioxide Consumption by Forestation and Afforestation in Russia: Analytical Review (Center of Ecological Policy, Moscow, 1995) [in Russian].

    Google Scholar 

  18. D. V. Karelin and D. G. Zamolodchikov, Carbon Exchange in Permafrost Ecosystems (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  19. Kyoto Protocol to the United Nations Framework Convention on Climate Change (Kyoto, 1992).

  20. D. Korobeinikov, Kyoto protocol, RIA Novosti, Feb. 16, (2015). https://ria.ru/spravka/20150216/1047544621.html.

    Google Scholar 

  21. V. N. Kudeyarov, “Current state of the carbon budget and the capacity of Russian soils for carbon sequestration,” Eurasian Soil Sci. 48, 923–933 (2015). doi 10.1134/S1064229315090070

    Article  Google Scholar 

  22. V. N. Kudeyarov, “Contribution of soil to atmospheric CO2 balance in Russia,” Dokl. Biol. Sci. 375, 610–612 (2000).

    Article  Google Scholar 

  23. V. N. Kudeyarov, “Carbon dioxide emission by the soil cover of Russia,” Priroda (Moscow), No. 7, 37–43 (1994).

    Google Scholar 

  24. V. N. Kudeyarov, “Soil sources of carbon dioxide in Russia,” in Global Changes of Environment and Climate (Moscow, 1999), pp. 165–201.

    Google Scholar 

  25. V. N. Kudeyarov, G. A. Zavarzin, S. A. Blagodatskii, A. V. Borisov, P. Yu. Voronin, V. A. Demkin, T. S. Demkina, I. V. Yevdokimov, D. G. Zamolodchikov, D. V. Karelin, A. S. Komarov, I. N. Kurganova, A. A. Larionova, V. O. Lopes de Gerenyu, A. I. Utkin, and O. G. Chertov, Carbon Pools and Fluxes in Terrestrial Ecosystems of Russia (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  26. V. N. Kudeyarov, F. I. Khakimov, N. F. Deeva, A. A. Il’ina, T. V. Kuznetsova, and A. V. Timchenko, “Evaluation of respiration of Russian soils,” Pochvovedenie, No. 1, 33–42 (1995).

    Google Scholar 

  27. I. N. Kurganova and V. N. Kudeyarov, “Assessment of carbon dioxide effluxes from soils of the taiga zone of Russia,” Eurasian Soil Sci. 31, 954–965 (1998).

    Google Scholar 

  28. I. N. Kurganova and V. O. Lopes de Gerenyu, “Contribution of abiotic factors to CO2 emission from soils in the freeze–thaw cycles,” Eurasian Soil Sci. 48, 1009–1020 (2015). doi 10.1134/S1064229315090082

    Article  Google Scholar 

  29. A. T. Mokronosov, “Global photosynthesis and biological diversity of vegetation,” in Carbon Cycle in Russia (Moscow, 1999), pp. 19–62.

    Google Scholar 

  30. A. T. Mokronosov, “Photosynthesis and CO2 concentration dynamics in the atmosphere,” Priroda (Moscow), No. 7, 25–27 (1994).

    Google Scholar 

  31. A. T. Mokronosov and V. N. Kudeyarov, “Carbon dioxide stock and emission in Russia,” in Global Changes of Environment and Climate (Moscow, 1997), pp. 292–306.

    Google Scholar 

  32. National Report on the Code of Anthropogenic Emission from the Sources and Absorption by the Sorbents of Greenhouse Gases not Controlled by the Montreal Protocol in 1990–2008 (Moscow, 2011) [in Russian].

  33. D. S. Orlov and O. N. Biryukova, “Carbon reserves in organic compounds of Russian soils,” Pochvovedenie, No. 1, 21–32 (1995).

    Google Scholar 

  34. “General indicators in agriculture of Russia in 2010,” in Russia in Digits: Brief Statistical Handbook (Rosstat, Moscow, 2011), pp. 5–11.

  35. Prirodno-Resursnye Vedomosti, No. 1, (2016).

  36. A. A. Romanovskaya and S. Federichi, “Quotas on emissions and the role of the forest sector in the national obligations of the Russian Federation in the new climate agreement,” Lesn. Khoz., No. 1, 22–38 (2015).

    Google Scholar 

  37. Russian Statistical Yearbook (Goskomstat Ross., Moscow, 1995) [in Russian].

  38. Russian Statistical Yearbook: Handbook (Rosstat, Moscow, 2016) [in Russian].

  39. Ya. G. Ryskov, I. V. Ivanov, V. A. Demkin, and R. F. Khakimov, “Dynamics of carbonate reserves in Russian soils and their role as a buffer reservoir of atmospheric carbon dioxide,” Pochvovedenie, No. 8, 934–942 (1997).

    Google Scholar 

  40. Ya. G. Ryskov, S. V. Mergel’, E. A. Arlashina, O. S. Khokhlova, and E. G. Morgun, “Emission and stock of CO2 in soils containing carbonates,” in Soil Respiration (Pushchino, 1993), pp. 107–124.

    Google Scholar 

  41. A. G. Ryaboshapko and A. P. Revokatova, Potential Role of CO 2 Removal from the Atmosphere by Climate Engineering with Normal Concentration Stabilization (Inst. of Global Climate and Ecology, Moscow, 2015) [in Russian].

    Google Scholar 

  42. Agriculture, Hunting, and Forestry in Russia: Handbook (Rosstat, Moscow, 2009), pp. 218–414.

  43. V. M. Semenov and B. M. Kogut, Soil Organic Matter (GEOS, Moscow, 2015) [in Russian].

    Google Scholar 

  44. V. S. Stolbovoi, S. Nilsson, A. Z. Shvidenko, and I. McCallum, “Aggregated estimation of basic parameters of biological production and the carbon budget of Russian. 3. Biogeochemical carbon fluxes,” Russ. J. Ecol. 35, 150–155 (2004).

    Article  Google Scholar 

  45. A. N. Filipchuk, N. V. Malysheva, B. N. Moiseev, and V. V. Strakhov, “Analytical review of the methods of measuring emissions and consumption of greenhouse gases by forests from atmosphere,” Leskhoz. Inf., No. 3, 36–85 (2016). http://lhi.vniilm.ru/.

    Google Scholar 

  46. A. N. Filipchuk, “Evaluation of carbon balance in forests of the Russian Federation: methodology,” Scientific Workshop “Role of Forests in the Paris Agreement,” August 8, 2017 (Moscow, 2017) [in Russian]. http://cepl.rssi.ru/wp-content/uploads/2017/08/HД_20170808_ Филипчyк.pdf.

    Google Scholar 

  47. N. M. Tchebakova, N. N. Vygodskaya, A. Arneth, L. Belelli Marchesini, Yu. A. Kurbatova, E. I. Parfenova, R. Valentini, S. V. Verkhovets, E. A. Vaganov, and E.-D. Schulze, “Energy and mass exchange and the productivity of main Siberian ecosystems (from Eddy covariance measurements). 2. Carbon exchange and productivity,” Biol. Bull. 42, 579–588 (2015).

    Article  Google Scholar 

  48. A. Z. Shvidenko and D. G. Schepaschenko, “Carbon budget of Russian forests,” Sib. Lesn. Zh., No. 1, 69–92 (2014).

    Google Scholar 

  49. D. G. Schepaschenko, A. Z. Shvidenko, M. Yu. Lesiv, P. V. Ontikov, M. V. Shchepashchenko, and F. Kraxner, “Estimation of forest area and its dynamics in Russia based on synthesis of remote sensing products,” Contemp. Probl. Ecol. 8, 811–817 (2015).

    Article  Google Scholar 

  50. A. Allakhverdov and V. Pokrovsky, “Russia, reluctantly, backs Kyoto,” Science 306, 209 (2004).

    Article  Google Scholar 

  51. M. Bahn, M. Reichstein, E. A. Davidson, J. Grünzweig, M. Jung, M. S. Carbone, D. Epron, L. Misson, Y. Nouvellon, O. Roupsard, K. Savage, S. E. Trumbore, C. Gimeno, J. Curiel Yuste, J. Tang, R. Vargas, and I. A. Janssens, “Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes,” Biogeosciences 7, 2147–2157 (2010). doi 10.5194/bg-7-2147-2010

    Article  Google Scholar 

  52. B. Bond-Lamberty and A. M. Thomson, “A global database of soil respiration data,” Biogeosciences 7, 1915–1926 (2010). doi 10.5194/bg-7-1915-2010

    Article  Google Scholar 

  53. B. Bond-Lamberty, C. Wang, and S. T. Gower, “A global relationship between the heterotrophic and autotrophic components of soil respiration?” Global Change Biol. 10, 1756–1766 (2004). doi 10.1111/j.1365-2486.2004.00816.x

    Article  Google Scholar 

  54. P. Ciais, J. G. Canadell, S. Luyssaert, F. Chevallier, A. Shvidenko, Z. Poussi, M. Jonas, P. Peylin, A.W. King, E.-D. Schulze, S. L. Piao, C. Rodenbeck, W. Peters, and F. M. Breon, “Can we reconcile atmospheric estimates of Northern terrestrial carbon sink with land-based accounting?” Curr. Opin. Environ. Sustain. 2, 225–230 (2010). doi 10.1016/j.cosust.2010.06.008

    Article  Google Scholar 

  55. E. A. Davidson and I. A. Janssens, “Temperature sensitivity of soil carbon decomposition and feedbacks to climate change,” Nature 440, 165–173 (2006). doi 10.1038/nature04514

    Article  Google Scholar 

  56. A. J. Dolman, A. Shvidenko, D. Schepaschenko, P. Ciais, N. Tchebakova, T. Chen, M. K. van der Molen, L. Belelli Marchesini, T. C. Maximov, S. Maksyutov, and E.-D. Schulze, “An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion method,” Biogeosciences 9, 5323–5340 (2012). doi 10.5194/bg-9-5323-2012

    Article  Google Scholar 

  57. P. Friedlingstein, R. M. Andrew, J. Rogelj, G. P. Peters, J. G. Canadell, R. Knutti, G. Luderer, M. R. Raupach, M. Schaeffer, D. P. van Vuuren, and C. Le Quéré, “Persistent growth of CO2 emissions and implications for reaching climate targets,” Nat. Geosci. 7, 709–715 (2014). doi 10.1038/NGEO2248

    Article  Google Scholar 

  58. P. G. Hanson, N. T. Edwards, C. T. Garten, and J. A. Andrews, “Separating root and soil microbial contribution to soil respiration: a review of methods and observations,” Biogeochemistry 48, 115–146 (2000).

    Article  Google Scholar 

  59. IPCC Special Report on Emissions Scenarios, A Special Report of Working Group III of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2001.

  60. IPCC Summary for Policymakers, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2007).

  61. D. S. Jenkinson, “Model estimates of CO2 emissions from soil in response to warming,” Nature 351, 304–306 (1991). doi 10.1038/351304a0

    Article  Google Scholar 

  62. W. Knorr, I. C. Prentice, J. I. House, and E. A. Holland, “Long-term sensitivity of soil carbon turnover to warming,” Nature 433, 298–301 (2005).

    Article  Google Scholar 

  63. V. N. Kudeyarov and I. N. Kurganova, “Carbon dioxide emission and net primary production of Russian terrestrial ecosystems,” Biol. Fertil. Soils 27, 246–250 (1998).

    Article  Google Scholar 

  64. I. N. Kurganova, V. N. Kudeayrov, and V. O. Lopes de Gerenyu, “Updated estimate of carbon balance on Russian territory,” Tellus B 62, 497–505 (2010).

    Article  Google Scholar 

  65. I. N. Kurganova, V. Lopes de Gerenyu, and Y. Kuzyakov, “Large-scale carbon sequestration in post-agrogenic ecosystems in Russia and Kazakhstan,” Catena 133, 461–466 (2015).

    Article  Google Scholar 

  66. I. N. Kurganova, “Carbon dioxide emission from soils of Russian terrestrial ecosystems, in Interim Report No. IR-02–070IIASA (Laxenburg, 2003).

    Google Scholar 

  67. C. Le Quéré1, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, G. P. Peters, A. C. Manning, T. A. Boden, P. P. Tans, R. A. Houghton, R. F. Keeling, S. A. Oliver, D. Andrews, P. Anthoni, L. Barbero, et al., “Global carbon budget 2016,” Earth Syst. Sci. Data 8, 605–649 (2016). doi 10.5194/essd-8-605-2016

    Article  Google Scholar 

  68. J. M. Melillo, I. E. Prentice, G. D. Farquhar, E.-D. Schulze, and G. E. Sala, “Terrestrial biotic responses to environmental change and feedbacks to climate,” in IPCC, 1996: Climate Change 1995: The Science of Climate Change, Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 1996), pp. 445–448.

    Google Scholar 

  69. B. Minasny, B. Malone, A. B. McBratney, D. A. Angers, D. Arrouas, A. Chamders, V. Chaplot, Z.-S. Chen, K. Cheng, B. B. Das, D. Field, A. Gimona, C. B. Hedley, S. Y. Hong, B. Mandal, et al., “Soil 4 per mille,” Geoderma 292, 59–86 (2017).

    Article  Google Scholar 

  70. L. Mukhortova, D. Schepaschenko, A. Shvidenko, I. McCallum, and F. Kraxner, “Soil contribution to carbon budget of Russian forests,” Agric. For. Meteorol. 200, 97–108 (2015).

    Article  Google Scholar 

  71. S. Nilsson, A. Shvidenko, V. Stolbovoi, G. Gluck, M. Jonas, and M. Obersteiner, Full Carbon Account for Russia (International Institute for Applied Systems Analysis, Laxenburg, 2000).

    Google Scholar 

  72. D. Papale, M. Reichstein, M. Aubinet, E. Canfora, C. Bernhofer, W. Kutsch, B. Longdoz, S. Rambal, R. M. Valentini, T. Vesala, and D. Yakir, “Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation,” Biogeosciences 3, 571–583 (2006).

    Article  Google Scholar 

  73. S. Quegan, C. Beer, A. Shvidenko, I. McCallum, I. Handoh, P. Peylin, C. Rodenbeck, W. Lucht, S. Nilsson, and C. Schmullius, “Estimating the carbon balance of central Siberia using a landscape-ecosystem approach, atmospheric inversion and dynamic global vegetation models,” Global Change Biol. 17 (1), 351–365 (2011).

    Article  Google Scholar 

  74. M. Reichstein and C. Beer, “Soil respiration across scales: the importance of a model-data integration framework for data interpretation,” J. Plant Nutr. Soil Sci. 171, 344–354 (2008). doi 10.1002/jpln.200700075

    Article  Google Scholar 

  75. M. Reichstein, E. Falge, D. Baldocchi, D. Papale, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, T. Gilmanov, A. Granier, T. Grunwald, K. Havrnkov, H. Ilvesniemi, D. Janous, A. Knohl, et al., “On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm,” Global Change Biol. 11, 1424–1439 (2005).

    Article  Google Scholar 

  76. S. Schaphoff, C. P. O. Reyer, D. Schepaschenko, D. Gerten, and A. Shvidenko, “Tamm review: observed and projected climate change impacts on Russia’s forests and its carbon balance,” For. Ecol. Manage., 2015. http://dx.doi.org/. doi 10.1016/j.foreco.2015.11.043

    Google Scholar 

  77. D. Schepaschenko, A. Shvidenko, and M. Schepaschenko, “Carbon balance of Russian agricultural land,” European Geosciences Union General Assembly 2012, Geophysical Research Abstracts No. 14 (Vienna, 2012), No. EGU2012-8544.

    Google Scholar 

  78. W. H. Schlesinger and J. A. Andrews, “Soil respiration and global carbon cycle,” Biogeochemistry 48, 7–20 (2000).

    Article  Google Scholar 

  79. A. Shvidenko and S. Nilsson, “A synthesis of the impact of Russian forests on the Global carbon budget for 1961–1998,” Tellus B 55, 391–415 (2003).

    Google Scholar 

  80. A. Shvidenko and S. Nilsson, “Dynamics of Russian forests and the carbon budget in 1961–1998: an assessment based on long-term forest inventory data,” Clim. Change 55, 5–37 (2002).

    Article  Google Scholar 

  81. A. Shvidenko, D. Schepschenko, S. Nilsson, and Y. Bouloui, “Semi-empirical models for assessing biological productivity of Northern Eurasian forests,” Ecol. Model. 204, 163–179 (2007).

    Article  Google Scholar 

  82. A. Z. Shvidenko, E. Gustafson, A. D. McGuire, V. I. Kharuk, D. G. Shepachenko, H. Shugart, N. M. Tchebakova, N. N. Vygodskaya, A. A. Onuchin, D. J. Hayes, J. McCallum, S. Maksyutov, L. V. Mukhortova, A. J. Soja, L. Belelli Marchesini, et al., “Terrestrial ecosystems and their change,” in Regional Environmental Changes in Siberia and Their Global Consequences (Springer-Verlag, New York, 2013), Chap. 6, pp. 171–249. doi 10.1007/978-94-007-4569-8_6

    Chapter  Google Scholar 

  83. A. Shvidenko, D. Schepaschenko, and I. McCallum, Bottom-Up Inventory of the Carbon Fluxes in Northern Eurasia for Comparison with GOSAT Level 4 Products: A Report (International Institute for Applied Systems Analysis, Laxenburg, 2010).

    Google Scholar 

  84. S. Sitch, P. Friedlingstein, N. Gruber, S. D. Jones, G. Murray-Tortarolo, A. Ahlström, S. C. Doney, H. Graven, C. Heinze, C. Huntingford, S. Levis, P. E. Levy, M. Lomas, B. Poulter, N. Viovy, et al., “Recent trends and drivers of regional sources and sinks of carbon dioxide,” Biogeosciences 12, 653–679 (2015).

    Article  Google Scholar 

  85. V. Stolbovoi, “Soil respiration and its role in Russia’s terrestrial C flux balance for Kyoto baseline year,” Tellus B 55, 258–269 (2003).

    Google Scholar 

  86. C. Tarnocai, J. D. Canadell, E. A. G. Schuur, P. Kuhry, and G. Mazhitova, “Soil organic pools in the northern circumpolar permafrost,” Global Biogeochem. Cycles 23, 1–11 (2009). doi 10.1029/2008GB003327

    Article  Google Scholar 

  87. J. M. Vose, K. J. Elliot, D. L. Johnson, R. F. Walker, M. G. Johnson, and D. T. Tingey, “Effect of elevated CO2 and N fertilization on soil respiration from ponderosa pine in open-top chambers,” Can. J. For. Res. 25, 1243–1251 (1995).

    Article  Google Scholar 

  88. D. R. Zak, K. S. Pregitzer, J. S. King, and W. E. Holmes, “Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis,” New Phytol. 147, 201–222 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kudeyarov.

Additional information

Original Russian Text © V.N. Kudeyarov, 2018, published in Pochvovedenie, 2018, No. 6, pp. 643–658.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudeyarov, V.N. Soil Respiration and Biogenic Carbon Dioxide Sink in the Territory of Russia: An Analytical Review. Eurasian Soil Sc. 51, 599–612 (2018). https://doi.org/10.1134/S1064229318060091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229318060091

Keywords

Navigation