Skip to main content
Log in

Self-Assembly of Metal-Organic Frameworks in Pickering Emulsions Stabilized with Graphene Oxide

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs) integrated with inorganic colloidal carriers compose a new class of functional hybrid materials possessing properties useful for a number of applications, in particular, selective sorption and (photo)catalysis. A new method has been developed for the synthesis of porous composites consisting of graphene oxide and MOF crystallites based on porphyrins. Graphene oxide serves simultaneously as a protective matrix for MOF and an emulsifier providing the assembly of immiscible components, which have different solubilities, in Pickering emulsions. Zinc acetate plays the role of a metal cluster, which immobilizes MOF crystallites on graphene oxide surface and participates in the MOF synthesis as a secondary structural block. This combination of the components makes it possible to avoid a chemical modification of graphene oxide during the assembly of the composite material. This strategy has been employed to obtain two series of model supramolecular composites based on zinc meso-tetra(4-pyridyl)porphyrinate and zinc meso-di(4-pyridyl)-di(4-carboxyphenyl)pophyrinate and study the relation between their structure, morphology, and properties. The developed colloid-chemical method makes it possible to simplify the synthesis of supramolecular composite materials and may be adapted to different combinations of inorganic matrices and MOFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Kitagawa, S., Kitaura, R., and Noro, S.-I., Angew. Chem., Int. Ed. Engl., 2004, vol. 43, p. 2334.

    Article  CAS  Google Scholar 

  2. Tranchemontagne, D.J., Hunt, J.R., and Yaghi, O.M., Tetrahedron, 2008, vol. 64, p. 8553.

    Article  CAS  Google Scholar 

  3. Reinsch, H. and Stock, N., Dalton Trans., 2017, vol. 46, p. 8339.

    Article  CAS  PubMed  Google Scholar 

  4. Stock, N. and Biswas, S., Chem. Rev., 2011, vol. 112, p. 933.

    Article  PubMed  CAS  Google Scholar 

  5. Lustig, W.P., Mukherjee, S., Rudd, N.D., Desai, A.V., Li, J., and Ghosh, S.K., Chem. Soc. Rev., 2017, vol. 46, p. 3242.

    Article  CAS  PubMed  Google Scholar 

  6. Candia-Onfray, C., Rojas, S., Zanoni, M.V.B., and Salazar, R., Curr. Opin. Electrochem., 2021, vol. 26, 100669.

    Article  CAS  Google Scholar 

  7. Goetjen, T.A., Liu, J., Wu, Y., Sui, J., Zhang, X., Hupp, J.T., and Farha, O.K., Chem. Commun., 2020, vol. 56, p. 10409.

    Article  CAS  Google Scholar 

  8. Drost, M., Tu, F., Berger, L., Preischl, C., Zhou, W., Gliemann, H., Wöll, C., and Marbach, H., ACS Nano, vol. 12, no. 2018, p. 3825.

  9. Bai, Y., Liu, C., Shan, Y., Chen, T., Zhao, Y., Yu, C., and Pang, H., Adv. Energy Mater., 2021, vol. 11, 2100346.

    Article  CAS  Google Scholar 

  10. Gao, W.Y., Chrzanowski, M., and Ma, S., Chem. Soc. Rev., 2014, vol. 43, p. 5841.

    Article  CAS  PubMed  Google Scholar 

  11. Liberman, I., Shimoni, R., Ifraemov, R., Rozenberg, I., Singh, C., and Hod, I., J. Am. Chem. Soc., 2020, vol. 142, p. 1933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sokolov, M.R., Enakieva, Y.Y., Yapryntsev, A.D., Shiryaev, A.A., Zvyagina, A.I., and Kalinina, M.A., Adv. Funct. Mater., 2020, vol. 30, 2000681.

    Article  CAS  Google Scholar 

  13. Dong, B.-X., Qian, S.-L., Bu, F.-Y., Wu, Y.-C., Feng, L.-G., Teng, Y.-L., Liu, W.-L., and Li, Z.-W., ACS Appl. Energy Mater., 2018, vol. 1, p. 4662.

    CAS  Google Scholar 

  14. Epp, K., Bueken, B., Hofmann, B.J., Cokoja, M., Hemmer, K., De Vos, D., and Fischer, R.A., Catal. Sci. Technol., 2019, vol. 9, p. 6452.

    Article  CAS  Google Scholar 

  15. Shultz, A.M., Farha, O.K., Hupp, J.T., and Nguyen, S.T., J. Am. Chem. Soc., 2009, vol. 131, p. 4204.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang, Z.W., Zou, Y.C., Zhao, T.T., Zhen, S.J., Li, Y.F., and Huang, C.Z., Angew. Chem., Int. Ed. E-ngl., 2020, vol. 59, p. 3300.

    Article  CAS  Google Scholar 

  17. Abrahams, B.F., Hoskins, B.F., Michail, D.M., and Robson, R., Nature, 1994, vol. 369, p. 727.

    Article  CAS  Google Scholar 

  18. Farha, O.K. and Hupp, J.T., Acc. Chem. Res., 2010, vol. 43, p. 1166.

    Article  CAS  PubMed  Google Scholar 

  19. Kosal, M.E., Chou, J.H., Wilson, S.R., and Suslick, K.S., Nat. Mater., 2002, vol. 1, p. 118.

    Article  CAS  PubMed  Google Scholar 

  20. Fateeva, A., Clarisse, J., Pilet, G., Greneche, J.M., Nouar, F., Abeykoon, B.K., Guegan, F., Goutaudier, C., Luneau, D., Warren, J.E., Rosseinsky, M.J., and Devic, T., Cryst. Growth Des., 2015, vol. 15, p. 1819.

    Article  CAS  Google Scholar 

  21. Fateeva, A., Chater., P.A., Ireland, C.P., Tahir, A.A., Khimyak, Y.Z., Wiper, P.V., Darwent, J.R., and Rosseinsky, M.J., Angew. Chem., Int. Ed. Engl., 2012, vol. 51, p. 7440.

    Article  CAS  Google Scholar 

  22. Lin, G., Ding, H., Chen, R., Peng, Z., Wang, B., and Wang, C., J. Am. Chem. Soc., 2017, vol. 139, p. 8705.

    Article  CAS  PubMed  Google Scholar 

  23. Feng, X., Liu, L., Honsho, Y., Saeki, A., Seki, S., Irle, S., Dong, Y., Nagai, A., and Jiang, D., Angew. Chem., 2012, vol. 124, p. 2672.

    Article  Google Scholar 

  24. Demel, J., Kubat, P., Millange, F., Marrot, J., Cisarova, I., and Lang, K., Inorg. Chem., 2013, vol. 52, p. 2779.

    Article  CAS  PubMed  Google Scholar 

  25. Shi, R.-H., Zhang, Z.-R., Fan, H.-L., Zhen, T., Shangguan, J., and Mi, J., Appl. Surf. Sci., 2017, vol. 394, p. 394.

    Article  CAS  Google Scholar 

  26. Petit, C. and Bandosz, T.J., J. Mater. Chem., 2009, vol. 19, p. 6521.

    Article  CAS  Google Scholar 

  27. Liu, J., Bo, X., Li, M., Yin, D., and Guo, L., J. Colloid Interface Sci., 2018, vol. 513, p. 438.

    Article  CAS  PubMed  Google Scholar 

  28. Petit, C. and Bandosz, T.J., Adv. Funct. Mater., 2011, vol. 21, p. 2108.

    Article  CAS  Google Scholar 

  29. Liu, X.W., Sun, T.J., Hu, J.L., and Wang, S.D., J. Mater. Chem. A, 2016, vol. 4, p. 3584.

    Article  CAS  Google Scholar 

  30. Jahan, M., Bao, Q., and Loh, K.P., J. Am. Chem. Soc., 2012, vol. 134, p. 6707.

    Article  CAS  PubMed  Google Scholar 

  31. Jahan, M., Bao, Q., Yang, J.X., and Loh, K.P., J. Am. Chem. Soc., 2010, vol. 132, p. 14487.

    Article  CAS  PubMed  Google Scholar 

  32. Kumar, R., Raut, D., Ramamurty, U., and Rao, C.N.R., Angew. Chem., Int. Ed. Engl., 2016, vol. 55, p. 7857.

    Article  CAS  Google Scholar 

  33. Geng, D., Chen, Y., Chen, Y., Li, Y., Li, R., Sun, X., Ye, S., and Knights, S., Energy Environ. Sci., 2011, vol. 4, p. 760.

    Article  CAS  Google Scholar 

  34. Yang, Z., Yao, Z., Li, G., Fang, G., Nie, H., Liu, Z., Zhou, X., Chen, X., and Huang, S., ACS Nano, 2012, vol. 6, p. 205.

  35. Hummers, W.S. and Offeman, R.E., J. Am. Chem. Soc., 1958, vol. 80, p. 1339.

    Article  CAS  Google Scholar 

  36. Kim, J., Cote, L.J., Kim, F., Yuan, W., Shull, K., and Huang, J., J. Am. Chem. Soc., 2010, vol. 132, p. 8180.

    Article  CAS  PubMed  Google Scholar 

  37. Jahandideh, H., Ganjeh-Anzabi, P., Bryant, S.L., and Trifkovic, M., Langmuir, 2018, vol. 34, p. 12870.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou, X., Huang, X., Qi, X., Wu, S., Xue, C., Boey, F.Y.C., Yan, Q., Chen, P., and Zhang, H., J. Phys. Chem. C, 2009, vol. 113, p. 10842.

    Article  CAS  Google Scholar 

  39. Frost, R., Jönsson, G.E., Chakarov, D., Svedhem, S., and Kasemo, B., Nano Lett., 2012, vol. 12, p. 3356.

    Article  CAS  PubMed  Google Scholar 

  40. Zvyagina, A.I., Shiryaev, A.A., Baranchikov, A.E., Chernyshev, V.V., Enakieva, Y.Y., Raitman, O.A., Ezhov, A.A., Meshkov, I.N., Grishanov, D.A., Ivanova, O.S., Gorbunova, Y.G., Arslanov, V.V., and Kalinina, M.A., New J. Chem., 2017, vol. 41, p. 948.

    Article  CAS  Google Scholar 

  41. Meshkov, I.N., Zvyagina, A.I., Shiryaev, A.A., Nickolsky, M.S., Baranchikov, A.E., Ezhov, A.A., Nugmanova, A.G., Enakieva, Y.Y., Gorbunova, Y.G., Arslanov, V.V., and Kalinina, M.A., Langmuir, 2018, vol. 34, p. 5184.

    Article  CAS  PubMed  Google Scholar 

  42. Guo, P., Chen, P., Ma, W., and Liu, M., J. Mater. Chem., 2012, vol. 22, p. 20243.

    Article  CAS  Google Scholar 

  43. Chen, Y., Li, A., Huang, Z.-H., Wang, L.-N., and Kang, F., Nanomaterials, 2016, vol. 6, p. 51.

    Article  PubMed Central  CAS  Google Scholar 

  44. Seidel, R.W., Goddard, R., Föcker, K., and Oppel, I.M., CrystEngComm, 2010, vol. 12, p. 387.

    Article  CAS  Google Scholar 

  45. Deiters, E., Bulach, V., Kyritsakas, N., and Hosseini, M.W., New J. Chem., 2005, vol. 29, p. 1508.

    Article  CAS  Google Scholar 

  46. Shi, N., Yin, G., Wei, X., and Xu, Z., Carbon, 2009, vol. 47, p. 534.

    Article  CAS  Google Scholar 

  47. Tashiro, K., Murafuji, T., Sumimoto, M., Fujitsuka, M., and Yamazaki, S., New J. Chem., 2020, vol. 44, p. 13824.

    Article  CAS  Google Scholar 

  48. Ermakova, E.V., Ezhov, A.A., Baranchikov, A.E., Gorbunova, Y.G., Kalinina, M.A., and Arslanov, V.V., J. Colloid Interface Sci., 2018, vol. 530, p. 521.

    Article  CAS  PubMed  Google Scholar 

  49. Wang, Y.Y., Chen, S.M., Haldar, R., Wöll, C., Gu, Z.G., and Zhang, J., Adv. Mater. Interfaces, 2018, vol. 5, 1800985.

    Article  CAS  Google Scholar 

  50. Seoane, B., Castellanos, S., Dikhtiarenko, A., Kapteijn, F., and Gascon, J., Coord. Chem. Rev., 2016, vol. 307, p. 147.

    Article  CAS  Google Scholar 

  51. Deng, X., Hu, J.-Y., Luo, J., Liao, W.-M., and He, J., Top. Curr. Chem., 2020, vol. 378, p. 27.

    Article  CAS  Google Scholar 

  52. Wu, H., Yang, F., Lv, X.-L., Wang, B., Zhang, Y.-Z., Zhao, M.-J., and Li, J.-R., J. Mater. Chem. A, 2017, vol. 5, p. 14525.

    Article  CAS  Google Scholar 

  53. Rui, X., Zha, Q.-Z., Wei, T.-T., and Xie, Y.-S., Inorg. Chem. Commun., 2014, vol. 48, p. 111.

    Article  CAS  Google Scholar 

  54. Huo, J., Marcello, M., Garai, A., and Bradshaw, D., Adv. Mater., 2013, vol. 25, p. 2717.

    Article  CAS  PubMed  Google Scholar 

  55. Zhu, G., Zhang, M., Bu, Y., Lu, L., Lou, X., and Zhu, L., Chem. An Asian J., 2018, vol. 13, p. 2891.

    Article  CAS  Google Scholar 

  56. Taniguchi, M. and Lindsey, J.S., Photochem. Photobiol., 2018, vol. 94, p. 290.

    Article  CAS  PubMed  Google Scholar 

  57. Reshetnikova, A.K., Zvyagina, A.I., Enakieva, Yu.Yu., Arslanov, V.V., and Kalinina, M.A., Colloid J., 2018, vol. 80, p. 684.

    Article  CAS  Google Scholar 

  58. Chen, W., Yan, L., and Bangal, P.R., Carbon, 2010, vol. 48, p. 1146.

    Article  CAS  Google Scholar 

  59. Park, J., Feng, D., Yuan, S., and Zhou, H.-C.C., Angew. Chem., Int. Ed. Engl., 2015, vol. 54, p. 430.

    Article  CAS  Google Scholar 

  60. Kim, J., Cote, L.J., Kim, F., Yuan, W., Shull, K.R., and Huang, J., J. Am. Chem. Soc., 2010, vol. 132, p. 8180.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.E. Baranchikov (Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences) for the kind help in the SEM studies and Kh.E. Erov (Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences) for the help in the study of nitrogen sorption by the BET method. The analyses were performed using the equipment of the Centers for Collective Use of the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, and the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation (project no. 20-13-00279).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kalinina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kirilin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nugmanova, A.G., Kalinina, M.A. Self-Assembly of Metal-Organic Frameworks in Pickering Emulsions Stabilized with Graphene Oxide. Colloid J 83, 614–626 (2021). https://doi.org/10.1134/S1061933X21050094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X21050094

Navigation