Skip to main content
Log in

Improving the Corrosion Resistance of Carbon Steel by Ni–P Nano-Structured Coating

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Corrosion resistance is one of the essential factors in metal selection and can be enhanced greatly by coatings. The corrosion resistance of the electroless nickel–phosphorus coatings on low-carbon steels has been studied in this research.The scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD) have been used to characterize the morphologies and compositions of the coatings.The corrosion behaviour of coated carbon steel has been evaluated bypotentiodynamic polarization and electrochemical impedance spectroscopy methods. Results show that the highest corrosion resistance of the coated substrate by the Ni‒P nano-structured coatingis achieved after heat treatment at 300°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Bozzini, B., Lenardi, C., Serra, M., and Fanigliulo, A., Electrochemical and X-ray photoelectron spectroscopy investigation into anodic behaviour of electroless Ni–9.5 wt % P in acidic chloride environment, Br. Corros. J., 2002, vol. 37, no. 3, p. 173.

    Article  CAS  Google Scholar 

  2. Huang, C.-Y., Mo, W.-W., and Roan, M.-L., Studies on the influence of double-layer electroless metal deposition on the electromagnetic interference shielding effectiveness of carbon fiber/ABS composites, Surf. Coat. Technol., 2004, vol. 184, nos. 2–3, p. 163.

    Article  CAS  Google Scholar 

  3. Rudnik, E., Kokoszka, K., and Łapsa, J., Comparative studies on the electroless deposition of Ni–P, Co–P and their composites with SiC particles, Surf. Coat. Technol., 2008, vol. 202, no. 12, p. 2584.

    Article  CAS  Google Scholar 

  4. Khorasani, S.A.H. and Sanjabi, S., High corrosion resistance Ni-reduced graphene oxide nanocomposite coating, Corros. Rev., 2016, vol. 34, nos. 5–6, p. 305.

    Article  CAS  Google Scholar 

  5. Farag, A.A., Kabel, K.I., Elnaggar, E.M., and Al-Gamal, A.G., Influence of polyaniline/multiwalled carbon nanotube composites on alkyd coatings against the corrosion of carbon steel alloy, Corros. Rev., 2017, vol. 35, no. 2, p. 85.

    Article  CAS  Google Scholar 

  6. Voronov, V., Gubin, S., Cheglakov, A., Kornilov, D.Y., Karaseva, A., Krasnova, E., and Tkachev, S., Nanoparticles of complex oxides Li1 + x(NiyMnzCo1 ‒ y  z)1 – xO2 – δ (0≤ x ≤ 0.2, 0.2≤ y ≤ 0.6, 0.2≤ z ≤ 0.4) obtained by thermal destruction of metal-containing compounds in oil, Russ. J. Electrochem., 2017, vol. 53, no. 7, p. 769.

    Article  CAS  Google Scholar 

  7. Chulkin, P., Ragoisha, G., and Streltsov, E., Platinum electrochemical corrosion and protection in concentrated alkali metal chloride solutions investigated by potentiodynamic nanogravimetry, Russ. J. Electrochem., 2017, vol. 53, no. 1, p. 1.

    Article  CAS  Google Scholar 

  8. Balaji, S., Kumar, M.A., Manichandran, T., and Mutharasu, D., Electrodeposited three dimensional tin nano wire anode for thin film Li-ion micro batteries, Russ. J. Electrochem., 2016, vol. 52, no. 3, p. 226.

    Article  CAS  Google Scholar 

  9. Ashassi-Sorkhabi, H. and Rafizadeh, S.H., Effect of coating time and heat treatment on structures and corrosion characteristics of electroless Ni–P alloy deposits, Surf. Coat. Technol., 2004, vol. 176, no. 3, p. 318.

    Article  CAS  Google Scholar 

  10. Crobu, M., Scorciapino, A., Elsener, B., and Rossi, A., The corrosion resistance of electroless deposited nano-crystalline Ni–P alloys, Electrochim. Acta, 2008, vol. 53, no. 8, p. 3364.

    Article  CAS  Google Scholar 

  11. Song, Y., Shan, D., and Han, E., High corrosion resistance of electroless composite plating coatings on AZ91D magnesium alloys, Electrochim. Acta, 2008, vol. 53, no. 5, p. 2135.

    Article  CAS  Google Scholar 

  12. Alirezaei, S., Monirvaghefi, S., Salehi, M., and Saatchi, A., Wear behavior of Ni–P and Ni–P–Al2O3 electroless coatings, Wear, 2007, vol. 262, nos. 7–8, p. 978.

    Article  CAS  Google Scholar 

  13. Wu, Y., Liu, H., Shen, B., Liu, L., and Hu, W., The friction and wear of electroless Ni–P matrix with PTFE and/or SiC particles composite, Tribol. Int., 2006, vol. 39, no. 6, p. 553.

    Article  CAS  Google Scholar 

  14. Ebrahimian-Hosseinabadi, M., Azari-Dorcheh, K., and Vaghefi, S.M., Wear behavior of electroless Ni–P–B4C composite coatings, Wear, 2006, vol. 260, nos. 1–2, p. 123.

    Article  CAS  Google Scholar 

  15. Novakovic, J., Vassiliou, P., Samara, K., and Argyropoulos, T., Electroless NiP–TiO2 composite coatings: their production and properties, Surf. Coat. Technol., 2006, vol. 201, no. 3-4, p. 895.

    Article  CAS  Google Scholar 

  16. Straffelini, G., Colombo, D., and Molinari, A., Surface durability of electroless Ni–P composite deposits, Wear, 1999, vol. 236, no. 1-2, p. 179.

    Article  CAS  Google Scholar 

  17. Chen, W., Gao, W., and He, Y., A novel electroless plating of Ni–P–TiO2 nano-composite coatings, Surf. Coat. Technol., 2010, vol. 204, no. 15, p. 2493.

    Article  CAS  Google Scholar 

  18. Tamilselvi, M., Kamaraj, P., Arthanareeswari, M., Devikala, S., and Selvi, J.A., Development of nano SiO2 incorporated nano zinc phosphate coatings on mild steel, Appl. Surf. Sci., 2015, vol. 332, p. 12.

    Article  CAS  Google Scholar 

  19. Gergely, A., Pászti, Z., Hakkel, O., Drotár, E., Mihály, J., and Kálmán, E., Corrosion protection of cold-rolled steel with alkyd paint coatings composited with submicron-structure types polypyrrole-modified nano-size alumina and carbon nanotubes, Mater. Sci. Eng. B, 2012, vol. 177, no. 18, p. 1571.

    Article  CAS  Google Scholar 

  20. Sheng, M., Wang, Y., Zhong, Q., Wu, H., Zhou, Q., and Lin, H., The effects of nano-SiO2 additive on the zinc phosphating of carbon steel, Surf. Coat. Technol., 2011, vol. 205, no. 11, p. 3455.

    Article  CAS  Google Scholar 

  21. Yang, Y., Chen, W., Zhou, C., Xu, H., and Gao, W., Fabrication and characterization of electroless Ni–P–ZrO2 nano-composite coatings, Appl. Nanosci., 2011, vol. 1, no. 1, p. 19.

    Article  CAS  Google Scholar 

  22. Aal, A.A., El-Sheikh, S., and Ahmed, Y., Electrodeposited composite coating of Ni–W–P with nano-sized rod-and spherical-shaped SiC particles, Mater. Res. Bull., 2009, vol. 44, no. 1, p. 151.

    Article  CAS  Google Scholar 

  23. Lu, J.H., Sun, W.C., Zhu, M., Tan, M.F., and Zhou, Q., Effects of content of Al2O3 particles and heat treatment on corrosion resistance of Ni–P–Al2O3 composite coatings, Adv. Mater. Res., 2010, vols. 105–106, no. 1, p. 441.

    Article  CAS  Google Scholar 

  24. Tachev, D., Georgieva, J., and Armyanov, S., Magnetothermal study of nanocrystalline particle formation in amorphous electroless Ni–P and Ni–Me–P alloys, Electrochim. Acta, 2001, vol. 47, nos. 1–2, p. 359.

    Article  CAS  Google Scholar 

  25. Yan, M., Ying, H., and Ma, T., Improved microhardness and wear resistance of the as-deposited electroless Ni–P coating, Surf. Coat. Technol., 2008, vol. 202, no. 24, p. 5909.

    Article  CAS  Google Scholar 

  26. Abdoli, M. and Rouhaghdam, A.S., Preparation and characterization of Ni–P/nanodiamond coatings: effects of surfactants, Diamond Relat. Mater., 2013, vol. 31, p. 30.

    Article  CAS  Google Scholar 

  27. Mallory, G.O. and Hajdu, J.B., Electroless Plating: Fundamentals and Applications, William Andrew, 1990.

    Google Scholar 

  28. International, A., Committee, A.I.H., and Committee, A.I.A.P.D., Metals Handbook: Properties and Selection, ASM Int., 1990.

    Google Scholar 

  29. Williamson, G. and Hall, W., X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1953, vol. 1, no. 1, p. 22.

    Article  CAS  Google Scholar 

  30. Qazi, S.J.S., Rennie, A.R., Cockcroft, J.K., and Vickers, M., Use of wide-angle X-ray diffraction to measure shape and size of dispersed colloidal particles, J. Colloid Interface Sci., 2009, vol. 338, no. 1, p. 105.

    Article  CAS  PubMed  Google Scholar 

  31. Bushroa, A., Rahbari, R., Masjuki, H., and Muhamad, M., Approximation of crystallite size and microstrain via XRD line broadening analysis in TiSiN thin films, Vacuum, 2012, vol. 86, no. 8, p. 1107.

    Article  CAS  Google Scholar 

  32. Sarma, H. and Sarma, K., X-ray peak broadening analysis of ZnO nanoparticles derived by precipitation method, Int. J. Sci. Res. Publ., 2014, vol. 4, no. 3, p. 1.

    Google Scholar 

  33. Habazaki, H., Ding, S.-Q., Kawashima, A., Asami, K., Hashimoto, K., Inoue, A., and Masumoto, T., The anodic behavior of amorphous Ni–19P alloys in different amorphous states, Corros. Sci., 1989, vol. 29, nos. 11–12, p. 1319.

    Article  CAS  Google Scholar 

  34. Carbajal, J.L. and White, R.E., Electrochemical production and corrosion testing of amorphous Ni–P, J. Electrochem. Soc., 1988, vol. 135, no. 12, p. 2952.

    Article  CAS  Google Scholar 

  35. Balaraju, J., Narayanan, T.S., and Seshadri, S., Evaluation of the corrosion resistance of electroless Ni–P and Ni–P composite coatings by electrochemical impedance spectroscopy, J. Solid State Electrochem., 2001, vol. 5, no. 5, p. 334.

    Article  CAS  Google Scholar 

  36. Balaraju, J., Selvi, V.E., Grips, V.W., and Rajam, K., Electrochemical studies on electroless ternary and quaternary Ni–P based alloys, Electrochim. Acta, 2006, vol. 52, no. 3, p. 1064.

    Article  CAS  Google Scholar 

  37. Stern, M. and Geary, A.L., Electrochemical polarization I. A theoretical analysis of the shape of polarization curves, J. Electrochem. Soc., 1957, vol. 104, no. 1, p. 56.

    Article  CAS  Google Scholar 

  38. Rybalka, K., Beketaeva, L., and Davydov, A., Cathodic component of corrosion process: polarization curve with two tafel portions, Russ. J. Electrochem., 2018, vol. 54, no. 5, p. 456.

    Article  CAS  Google Scholar 

  39. Rybalka, K., Beketaeva, L., and Davydov, A., Corrosion behavior of aluminum in 1 M HCl solution, Russ. J. Electrochem., 2016, vol. 52, no. 5, p. 463.

    Article  CAS  Google Scholar 

  40. Rybalka, K., Beketaeva, L., and Davydov, A., Determination of corrosion current density by the rate of cathodic depolarizer consumption, Russ. J. Electrochem., 2016, vol. 52, no. 3, p. 268.

    Article  CAS  Google Scholar 

  41. Veloz, M. and González, I., Electrochemical study of carbon steel corrosion in buffered acetic acid solutions with chlorides and H2S, Electrochim. Acta, 2002, vol. 48, no. 2, p. 135.

    Article  CAS  Google Scholar 

  42. Mansfeld, F., Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection, Electrochim. Acta, 1990, vol. 35, no. 10, p. 1533.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research has been performed using the facilities by Shiraz Branch, Islamic Azad University, Shiraz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Jafari.

Ethics declarations

This manuscript has not been submitted to, nor is under review at, another journal or other publishing venue and I, as the corresponding author has no affiliation with any organization with a direct or indirect financial interest in the subject matter discussed in the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeil Jafari Improving the Corrosion Resistance of Carbon Steel by Ni–P Nano-Structured Coating. Russ J Electrochem 57, 663–670 (2021). https://doi.org/10.1134/S1023193520120083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520120083

Keywords:

Navigation