Skip to main content
Log in

Electrochemical Properties of N-Methyl- and N-Phenyl-2,4,6-Triphenylpyridium Perchlorate

  • SHORT COMMUNICATIONS
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical properties of N-methyl- and N-phenyl-2,4,6-triphenylpyridinium perchlorates were studied by cyclic voltammetry (CV). The substituent at the nitrogen atom strongly affects the potentials of salt reduction and the electrochemical reversibility of the transfer of the second electron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Turner, J.A., Sustainable hydrogen production, Science, 2004, vol. 305, p. 972.

    Article  CAS  Google Scholar 

  2. Lewis, N.S. and Nocera, D.G., Powering the planet: chemical challenges in solar energy utilization, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, p. 15 729.

    Article  Google Scholar 

  3. Helm, M.L., Stewart, M.P., Bullock, R.M., Rakowski, DuBois M., and DuBois, D.L., A synthetic nickel electrocatalyst with a turnover frequency above 100 000 s−1 for H2 production, Science, 2011, vol. 333, p. 863.

    Article  CAS  Google Scholar 

  4. Karunadasa, H.I., Chang, C.J., and Long, J.R., A molecular molybdenum-oxo catalyst for generating hydrogen from water, Nature, 2010, vol. 464, p. 1329.

    Article  CAS  Google Scholar 

  5. McKone, J.R., Marinescu, S.C., Brunschwig, B.S., Winkler, J.R., and Gray, H.B., Earth-abundant hydrogen evolution electrocatalysts, Chem. Sci., 2014, vol. 5, p. 865.

    Article  CAS  Google Scholar 

  6. Afgan, N.H., Veziroglu, A., and Carvalho, M.G., Multi-criteria evaluation of hydrogen system options, Int. J. Hydrogen Energy, 2007, vol. 32, p. 3183.

    Article  CAS  Google Scholar 

  7. Wang, M., Chen, L., and Sun, L., Recent progress in electrochemical hydrogen production with earth-abundant metal complexes as catalysts, Energy Environ Sci., 2012, vol. 5, p. 6763.

    Article  CAS  Google Scholar 

  8. Artero, V., Chavarot-Kerlidou, M., and Fontecave, M., Splitting water with cobalt, Angew. Chem. Int. Ed., 2011, vol. 50, p. 7238.

    Article  CAS  Google Scholar 

  9. Belaya, I.G., Svidlov, S.V., Dolganov, A.V., Zelinskii, G.E., Potapova, T.V., Vologzhanina, A.V., Varzatskii, O.A., Bubnov, Y.N., and Voloshin, Y.Z., Apically linked iron(II) dioximate and oximehydrazonate bis-clathrochelates with hydrocarbon spacer substituents and their semi- and monoclathrochelate precursors and analogs: synthetic strategy, structure, redox and electrocatalytic properties, Dalton Trans., 2013, vol. 42, p. 13 667.

    Article  Google Scholar 

  10. Lebed, E.G., Belov, A.S., Dolganov, A.V., Vologzhanina, A.V., Szebesczyk, A., Gumienna-Kontecka, E., Kozlowski, H., Bubnov, Y.N., Dubey, I.Y., and Voloshin, Y.Z., First clathrochelate iron and cobalt(II) tris-dioximates with reactive apical substituents, Inorg. Chem. Commun., 2013, vol. 30, p. 53.

    Article  CAS  Google Scholar 

  11. Dolganov, A.V., Tanaseichuk, B.S., Moiseeva, D.N., Yurova, V.Y., Sakanyan, J.R., Shmelkova, N.M., and Lobanov, V.V., Acridinium salts as metal-free electrocatalyst for hydrogen evolution reaction, Electrochem Commun., 2016, vol. 68, p. 59.

    Article  CAS  Google Scholar 

  12. Dolganov, A.V., Tanaseichuk, B.S., Ivantsova, P.M., Tsebulaeva, Y.V., Kostrukov, S.G., Moiseeva, D.N., Shmelkova, N.M., Yurova, V.Y., Balakireva, O.I., Nagaeva, I.G., and Trushkova, N.N. Metal-free electrocatalyst for hydrogen production from water, Int. J. Electrochem. Sci., 2016, vol. 11, p. 9559.

    Article  CAS  Google Scholar 

  13. Mairanovskii, S.G., Kataliticheskie i kineticheskie volny v polyarografii (Catalytic and Kinetic Waves in Polarogaphy), Moscow: Nauka, 1966.

  14. Mairanovskii, S.G., Theory of catalytic hydrogen waves in organic polarography, Russ. Chem. Rev., 1964, vol. 33, p. 38.

    Article  Google Scholar 

  15. Mairanovskii, S.G., Polarographic catalytic hydrogen waves as dependent on the structure of the organic catalyst, Dokl. Akad. Nauk SSSR, 1962, vol. 142, p. 1327.

    CAS  Google Scholar 

  16. Mairanovskii, S.G., The electroreduction of organic compounds in the presence of catalysts causing catalytic evolution of hydrogen and the electrosynthesis of chiral compounds, Russ. Chem. Rev., 1991, vol. 60, p. 1085.

    Article  Google Scholar 

  17. Leibson, V.N., Churilina, A.P., Mendkovic, A.S., and Gultyai, V.P., New ideas of the mechanism of catalytic hydrogen evolution in the buffer solutions of organic compounds, J. Electroanal. Chem., 1989, 261, p. 165.

    Article  CAS  Google Scholar 

  18. Leibzon, V.N., Churilina, A.P., Mendkovich, A.S., and Gultyai, V.P., Nature of the polarographic catalytic hydrogen waves due to organic compounds, Russ. Chem. Bull., 1986, vol. 35, p. 1773.

    Article  Google Scholar 

  19. Dorofeenko, G.N., Sadekova, E.I., and Kuznetsova, E.V., Preparativnaya khimiya pirilievykh solei (Preparative Chemistry of Pyrilium Salts), Rostov-on-Don: Rost. Univ., 1979.

  20. Stephens, P.J., Devlin, F.J., Chablowski, C.F., and Frisch, M.J., Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem., 1994, vol. 98, p. 11 623.

    Article  Google Scholar 

  21. Ditchfield, R., Hehre, W.J., and Pople, J.A., Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules, J. Chem. Phys., 1971, vol. 54, p. 724.

    Article  CAS  Google Scholar 

  22. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.J., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., and Montgomery, J.A., General atomic and molecular electronic structure system, J. Comput. Chem., 2003, vol. 14, p. 1347.

    Article  Google Scholar 

  23. Granovsky, A.A., Firefly version 8.0, http://classic. chem.msu.su/gran/firefly/index.html.

  24. Tomasi, J., Mennucci, B., and Cammi, R., Quantum mechanical continuum solvation models, 2005, Chem. Rev., vol. 105, p. 2999.

    Article  CAS  Google Scholar 

  25. Bard, A.J. and Faulkner, L.R., Electrochemical methods: Fundamentals and applications, New York: Wiley, 2001.

    Google Scholar 

  26. Hogan, D.T. and Sutherland, T.C., Modern spin on the electrochemical persistence of heteroatom-bridged triphenylmethyl-type radicals, J. Phys. Chem. Lett, 2018, vol. 9, p. 2825.

    Article  CAS  Google Scholar 

  27. Baik, M. and Friesner, R.A., Computing redox potentials in solution: Density functional theory as a tool for rational design of redox agents, J. Phys. Chem. A, 2002, vol. 106, p. 7407.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Foundation of Basic Research (grant no. 18-03-00211) and the Ministry of Education and Science of the Russian Federation (state assignment, project no. 4.4566.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Dolganov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolganov, A.V., Tanaseichuk, B.S., Tarasova, O.V. et al. Electrochemical Properties of N-Methyl- and N-Phenyl-2,4,6-Triphenylpyridium Perchlorate. Russ J Electrochem 55, 807–812 (2019). https://doi.org/10.1134/S1023193519080056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193519080056

Keywords:

Navigation