Skip to main content
Log in

The general fifth-order nonlinear Schrödinger equation with nonzero boundary conditions: Inverse scattering transform and multisoliton solutions

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the inverse scattering transform of the general fifth-order nonlinear Schrödinger (NLS) equation with nonzero boundary conditions (NZBCs), which can be reduced to several integrable equations. First, a matrix Riemann–Hilbert problem (RHP) for the fifth-order NLS equation with NZBCs at infinity is systematically investigated. Moreover, the inverse problems are solved by studying a matrix RHP. We construct the general solutions for reflectionless potentials. The trace formulas and theta conditions are also presented. In particular, we analyze the simple-pole and double-pole solutions for the fifth-order NLS equation with NZBCs. Finally, we discuss the dynamics of the obtained solutions in terms of their plots. The results in this work should be helpful in explaining and enriching the nonlinear wave phenomena in nonlinear fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. G. Yang and Y. R. Shen, “Spectral broadening of ultrashort pulses in a nonlinear medium,” Opt. Lett., 9, 510–512 (1984).

    Article  ADS  Google Scholar 

  2. D. Anderson and M. Lisak, “Nonlinear asymmetric self-phase modulation and self-steepending of pulses in long optical waveguides,” Phys. Rev. A, 27, 1393–1398 (1983).

    Article  ADS  Google Scholar 

  3. N. Sasa and J. Satsuma, “New-type of soliton solutions for a higher-order nonlinear Schrödinger equation,” J. Phys. Soc. Japan, 60, 409–417 (1981).

    Article  ADS  MATH  Google Scholar 

  4. T. Kano, “Normal form of nonlinear Schrödinger equation,” J. Phys. Soc. Japan, 58, 4322–4328 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  5. A. Chowdury, D. J. Kedziora, A. Ankiewicz, and N. Akhmediev, “Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms,” Phys. Rev. E, 90, 032922, 9 pp. (2014).

    Article  ADS  Google Scholar 

  6. S. Y. Chen and Z. Y. Yan, “The higher-order nonlinear Schrödinger equation with non-zero boundary conditions: robust inverse scattering transform, breathers, and rogons,” Phys. Lett. A, 15, 125906, 11 pp. (2019).

    Article  MATH  Google Scholar 

  7. B. Prinari, F. Demontis, S. Li, and T. P. Horikis, “Inverse scattering transform and soliton solutions for square matrix nonlinear Schrödinger equations with non-zero boundary conditions,” Phys. D, 368, 22–49 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. J. Ablowitz, G. Biondini, and B. Prinari, “Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation with nonvanishing boundary conditions,” Inverse Problems, 23, 1711–1758 (2009).

    Article  ADS  MATH  Google Scholar 

  9. G. Biondini, G. Kovačič, and G. Gregor, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions,” J. Math. Phys., 55, 031506, 22 pp. (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. M. Pichler and G. Biondini, “On the focusing non-linear Schrödinger equation with non-zero boundary conditions and double poles,” IMA J. Appl. Math., 82, 131–151 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Demontis, B. Prinari, C. van der Mee, and F. Vitale, “The inverse scattering transform for the defocusing nonlinear Schrödinger equations with nonzero boundary conditions,” Stud. Appl. Math., 131, 1–40 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Prinari and F. Vitale, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with one-sided nonzero boundary condition,” in: Algebraic and Analytic Aspects of Integrable Systems and Painlevé Equations (Baltimore, Maryland, USA, January 18, 2014, Contemporary Mathematics, Vol. 651, A. Dzhamay, K. Maruno, and C. M. Ormerod, eds.), AM, Providence, RI (2015), pp. 157–194.

    MATH  Google Scholar 

  13. F. Demontis, B. Prinari, C. van der Mee, and F. Vitale, “The inverse scattering transform for the focusing nonlinear Schrödinger equation with asymmetric boundary conditions,” J. Math. Phys., 55, 101505, 40 pp. (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. G. Biondini, E. Fagerstrom, and B. Prinari, “Inverse scattering transform for the defocusing nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions,” Phys. D, 333, 117–136 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. J. Ablowitz, Bao-Feng Feng, X. Luo, and Z. Musslimani, “Inverse scattering transform for the nonlocal reverse space–time nonlinear Schrödinger equation,” Theoret. and Math. Phys., 196, 1241–1267 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. G. Q. Zhang and Z. Y. Yan, “Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions,” Phys. D, 402, 132170, 14 pp. (2020).

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Q. Zhang, S. Y. Chen, and Z. Y. Yan, “Focusing and defocusing Hirota equations with non-zero boundary conditions: inverse scattering transforms and soliton solutions,” Commun. Nonlinear Sci. Numer. Simul., 80, 104927, 22 pp. (2020).

    Article  MathSciNet  MATH  Google Scholar 

  18. X. B. Wang and B. Han, “Characteristics of rogue waves on a soliton background in the general three-component nonlinear Schrödinger equation,” Appl. Math. Mod., 88, 688–700 (2020).

    Article  MATH  Google Scholar 

  19. X.-B. Wang and B. Han, “Inverse scattering transform of an extended nonlinear Schrödinger equation with nonzero boundary conditions and its multisoliton solutions,” J. Math. Anal. Appl., 487, 123968, 20 pp. (2020).

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Prinari, G. Biondini, and A. D. Trubatch, “Inverse scattering transform for the multi-component nonlinear Schrödinger equation with nonzero boundary conditions,” Stud. Appl. Math., 126, 245–302 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation,” J. Math. Phys., 14, 805–809 (1973).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. J. S. He, L. H. Wang, L. J. Li, K. Porsezian, and R. Erdélyi, “Few-cycle optical rogue waves: complex modified Korteweg–de Vries equation,” Phys. Rev. E, 89, 062917, 19 pp. (2014); arXiv: 1405.7845.

    Article  ADS  Google Scholar 

  23. S. F. Tian, “Initial-boundary value problems of the coupled modified Korteweg–de Vries equation on the half-line via the Fokas method,” J. Phys. A: Math. Theor., 50, 395204, 32 pp. (2017).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Lakshmanan, K. Porsezian, and M. Daniel, “Effect of discreteness on the continuum limit of the Heisenberg spin chain,” Phys. Lett. A, 133, 483–488 (1988).

    Article  ADS  Google Scholar 

  25. A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation,” Phys. Rev. E, 81, 046602, 8 pp. (2010).

    Article  ADS  MathSciNet  Google Scholar 

  26. X. G. Geng, Y. Y. Zhai, and H. H. Dai, “Algebro-geometric solutions of the coupled modified Korteweg–de Vries hierarchy,” Adv. Math., 263, 123–153 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  27. K. Porsezian, M. Daniel, and M. Lakshmanan, “On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain,” J. Math. Phys., 33, 1807–1816 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. W.-Q. Peng, S.-F. Tian, X.-B. Wang, and T.-T. Zhang, “Characteristics of rogue waves on a periodic background for the Hirota equation,” Wave Motion, 93, 102454, 10 pp. (2020).

    Article  MathSciNet  MATH  Google Scholar 

  29. X.-B. Wang, S.-F. Tian, and T.-T. Zhang, “Characteristics of the breather and rogue waves in a \((2+1)\)-dimensional nonlinear Schrödinger equation,” Proc. Amer. Math. Soc., 146, 3353–3365 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  30. X.-B. Wang and B. Han, “A Riemann–Hilbert approach to a generalized nonlinear Schrödinger equation on the quarter plane,” Math. Phys. Anal. Geom., 23, 25, 23 pp. (2020).

    Article  MATH  Google Scholar 

  31. X.-B. Wang and B. Han, “Application of the Riemann–Hilbert method to the vector modified Korteweg–de Vries equation,” Nonlinear Dyn., 99, 1363–1377 (2020).

    Article  MATH  Google Scholar 

  32. Y. Yang, Z. Yan, and B. A. Malomed, “Rogue waves, rational solitons, and modulational instability in an integrable fifth-order nonlinear Schrödinger equation,” Chaos, 25, 103112, 9 pp. (2015); arXiv: 1509.05886.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform (SIAM Studies in Applied Mathematics, Vol. 4), SIAM, Philadelphia, PA (1981).

    Book  MATH  Google Scholar 

  34. M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (London Mathematical Society Lecture Note Series, Vol. 149), Cambridge Univ. Press, Cambridge (1991).

    Book  MATH  Google Scholar 

  35. M. J. Ablowitz, B. Prinari, and A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, Cambridge Univ. Press, Cambridge (2004).

    MATH  Google Scholar 

  36. L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer Series in Soviet Mathematics), Springer, Berlin (2007).

    MATH  Google Scholar 

  37. C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. W. Miura, “Method for solving the Korteweg–de Vries equation,” Phys. Rev. Lett., 19, 1095–1097 (1967).

    Article  ADS  MATH  Google Scholar 

  38. D.-S. Wang and X. Wang, “Long-time asymptotics and the bright \(N\)-soliton solutions of the Kundu–Eckhaus equation via the Riemann–Hilbert approach,” Nonlinear Anal. Real World Appl., 41, 334–361 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  39. W.-X. Ma, “The inverse scattering transform and soliton solutions of a combined modified Korteweg–de Vries equation,” J. Math. Anal. Appl., 471, 796–811 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  40. W.-X. Ma, “Riemann–Hilbert problems and \(N\)-soliton solutions for a coupled mKdV system,” J. Geom. Phys., 132, 45–54 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. W.-X. Ma, “Riemann–Hilbert problems of a six-component mKdV system and its soliton solutions,” Acta Math. Sci., 39, 509–523 (2019).

    Article  MathSciNet  Google Scholar 

  42. W.-X. Ma, “Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations,” Proc. Amer. Math. Soc., 149, 251–263 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  43. Xiu-Bin Wang and Bo Han, “Pure soliton solutions of the nonlocal Kundu–nonlinear Schrödinger equation,” Theoret. and Math. Phys., 206, 40–67 (2021).

    Article  ADS  MATH  Google Scholar 

  44. Zhi-Qiang Li, Shou-Fu Tian, Wei-Qi Peng, and Jin-Jie Yang, “Inverse scattering transform and soliton classification of higher-order nonlinear Schrödinger–Maxwell–Bloch equations,” Theoret. and Math. Phys., 203, 709–725 (2020).

    Article  ADS  MATH  Google Scholar 

  45. B. Yang and Y. Chen, “High-order soliton matrices for Sasa–Satsuma equation via local Riemann–Hilbert problem,” Nonlinear Anal. Real World Appl., 45, 918–941 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  46. X.-B. Wang and B. Han, “The pair-transition-coupled nonlinear Schrödinger equation: The Riemann–Hilbert problem and \(N\)-soliton solutions,” Eur. Phys. J. Plus, 134, 78, 6 pp. (2019).

    Article  Google Scholar 

  47. B. Guo and L. Ling, “Riemann–Hilbert approach and \(N\)-soliton formula for coupled derivative Schrödinger equation,” J. Math. Phys., 53, 073506, 20 pp. (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. J. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems (Mathematical Modeling and Computation, Vol. 16), SIAM, Philadelphia, PA (2010).

    Book  MATH  Google Scholar 

  49. D. S. Wang, D. J. Zhang, and J. Yang, “Integrable properties of the general coupled nonlinear Schrödinger equations,” J. Math. Phys., 51, 023510, 17 pp. (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China under Grant No. 11871180.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Bin Wang.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 210, pp. 11–37 https://doi.org/10.4213/tmf10149.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XB., Han, B. The general fifth-order nonlinear Schrödinger equation with nonzero boundary conditions: Inverse scattering transform and multisoliton solutions. Theor Math Phys 210, 8–30 (2022). https://doi.org/10.1134/S0040577922010020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922010020

Keywords

Navigation