Skip to main content
Log in

Phase Diagram of Ethylene Carbonate–Sulfolane System

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Phase equilibria in the ethylene carbonate (EC)–sulfolane (SL) binary system were investigated using differential scanning calorimetry in a temperature range from –150 to +50°C to construct a phase diagram of the system. The EC–SL system belongs to a simple eutectic type, with a eutectic point of –16°C at 70 wt % of SL. It was noted that the EC-SL solutions have a tendency to supercooling in the composition range from 50 to 75 wt % of SL; the metastable liquid phase is characterized by a glass transition temperature Tg = –105°C. Reaching of an equilibrium state is hindered in the middle region of compositions; this can be explained in terms of strong dipole-dipole interactions between EC and SL molecules, whose intensity increases with decreasing temperature. Quantum-chemical calculations of the Gibbs energy of the formation of isolated dimers of various types, performed by the M052X method based on density-functional theory, confirm this assumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. K. Xu, Chem. Rev. 114, 11503 (2014). https://doi.org/10.1021/cr500003w

    Article  CAS  PubMed  Google Scholar 

  2. M. Ue, Y. Sasaki, Y. Tanaka, and M. Morita, in Electrolytes for Lithium and Lithium-Ion Batteries, Ed. by T. R. Jow, K. Xu, O. Borodin, and M. Ue (Springer Science, New York, 2014), p. 93. https://doi.org/10.1007/978-1-4939-0302-3_1

    Book  Google Scholar 

  3. A. G. Demakhin, V. M. Ovsyannikov, and S. M. Ponomarenko, Lithium CPS Electrolyte Systems (Sarat. Univ., Saratov, 1993) [in Russian].

    Google Scholar 

  4. G. G. Eshetu, J.-P. Bertrand, A. Lecocq, et al., J. Power Sources 269, 804 (2014). https://doi.org/10.1016/j.jpowsour.2014.07.065

    Article  CAS  Google Scholar 

  5. Y. Watanabe, S.-I. Kinoshita, S. Wada, et al., J. Power Sources 179, 770 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.006

    Article  CAS  Google Scholar 

  6. L. Jannelli, A. Lopez, R. Jalenti, and L. Silvestri, J. Chem. Eng. Data 27, 28 (1982).

    Article  CAS  Google Scholar 

  7. J. Gordon and R. A. Ford, The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References (Wiley, New York, 1972).

    Google Scholar 

  8. J. Máca, J. Vondrák, and M. Sedlaříková, ECS Trans. 48, 135 (2014). https://doi.org/10.1149/04801.0135ecst

    Article  Google Scholar 

  9. P. H. Johnson, Report LBL-19886 (Lawrence Berkeley Lab., CA, 1985). https://escholarship.org/uc/item/8cg2t9r3

    Google Scholar 

  10. J. Maca, M. Frk, and M. Sedlarikova, Renewable Energy Power Quality J. 1 (11), 218 (2013). https://doi.org/10.24084/repqj11.261

  11. M. Morita, M. Goto, and Y. Matsuda, J. Appl. Electrochem. 22, 901 (1992).

    Article  CAS  Google Scholar 

  12. L. Rycerz, J. Therm. Anal. Calorim. 113, 231 (2013). https://doi.org/10.1007/s10973-013-3097-0

    Article  CAS  Google Scholar 

  13. G. Becket, S. Quah, and J. Hill, J. Therm. Anal. Calorim. 40, 537 (1993). https://doi.org/10.1007/bf02546623

    Article  CAS  Google Scholar 

  14. G. W. H. Hohne, W. F. Hemminger, and H. J. Flammersheim, Differential Scanning Calorimetry, 2nd ed. (Springer, Berlin, 2003).

    Book  Google Scholar 

  15. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision C.01 (Gaussian Inc., Wallingford CT, 2010).

    Google Scholar 

  16. Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory Comput. 2, 364 (2006). https://doi.org/10.1021/ct0502763

    Article  CAS  PubMed  Google Scholar 

  17. S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344

    Article  CAS  PubMed  Google Scholar 

  18. A. Schaefer, C. Huber, and R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994). https://doi.org/10.1063/1.467146

    Article  CAS  Google Scholar 

  19. L. Jannelli and M. Pansini, J. Chem. Eng. Data 30, 428 (1985).

    Article  CAS  Google Scholar 

  20. L. Jannelli, A. Inglese, A. Sacco, and P. Ciani, Zeitschr. Naturf. A 30, 87 (1975).

    Article  CAS  Google Scholar 

  21. M. S. Ding, J. Chem. Eng. Data 49, 276 (2004). https://doi.org/10.1021/je034134e

    Article  CAS  Google Scholar 

  22. M. S. Ding, K. Xu, and T. R. Jow, J. Electrochem. Soc. 147, 1688 (2000).

    Article  CAS  Google Scholar 

  23. A. Chagnes, H. Allouchi, B. Carre, et al., J. Appl. Electrochem. 33, 589 (2003).

    Article  CAS  Google Scholar 

  24. M. S. Ding, J. Solution Chem. 34, 343 (2005). https://doi.org/10.1007/s10953-005-3054-z

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Quantumchemical calculations were performed on the cluster supercomputer of the Ufa Institute of Chemistry UFRC RAS.

Funding

This work was supported by the Russian Science Foundation (grant no. 18-19-00014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Reznitskikh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reznitskikh, O.G., Istomina, A.S., Borisevich, S.S. et al. Phase Diagram of Ethylene Carbonate–Sulfolane System. Russ. J. Phys. Chem. 95, 1121–1127 (2021). https://doi.org/10.1134/S0036024421060224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421060224

Keywords:

Navigation