Skip to main content
Log in

Solid–Liquid Phase Equilibrium of the Ternary System NH4Cl-(NH2)2CO-H2O at Multiple Temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Solid–liquid phase equilibria of the ternary system NH4Cl–(NH2)2CO–H2O at 283.15 K, 313.15 K and 353.15 K were measured by the method of isothermal solution equilibrium. Solubility data of the system were determined by volumetric and colorimetric methods; solid phases were analyzed by Schreinemaker's method of wet residues and X-ray powder diffraction. The triangle phase diagrams were drawn and the experimental data were fitted with Wilson and NRTL models. Each phase diagram includes one double salt, two eutectic points, three isothermal solubility curves, and five crystallization regions. The composition of the double salt is xNH4Cl·(NH2)2CO, the value of x reduces from 4.58 to 1.95 with the experimental temperature rising. The values of RAD and RMSD with Wilson model are 4.48% and 2.52% that with NRTL model are 4.19% and 1.77%; which indicates that the two thermodynamic models can fit the experimental data very well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The results in the submitted work are presented clearly, honestly, and without fabrication, falsification or inappropriate data manipulation (including image based manipulation). No data, text, or theories by others are presented.

Abbreviations

ΔC p :

Heat capacity difference, J·mol1·k1

f i :

Fugacity of component i

\(f_{i}^{0}\) :

Fugacity of pure subcooled liquid of component i

g E :

Excess Gibbs energy J·mol1

G ij ,G ji :

Binary parameter in NRTL model

g ij ,g ji :

Binary energy parameter in NRTL model

ΔH m :

Melting enthalpy at Tm J·mol1

ΔH tp :

Melting enthalpy at Ttp J·mol1

m :

Number of components

N :

Number of experiments

R :

Gas constant 8.314 J·mol1·k1

T :

Temperature K

T m :

Melting temperature K

T tp :

Triple point temperature K

V i :

Molar liquid volume of pure component i m3·mol1

w i :

Mass fraction solubility %

x i :

Mole fraction solubility %

α ij :

Non-random parameter in NRTL model 0.2 ~ 0.47

γ i :

Activity coefficient

λ ij , λ ii :

Binary energy parameters in Wilson model

Λ ij , Λ ji :

Binary parameters in Wilson model

τ ij , τ ji :

Binary parameter in NRTL model

\(\mu_{i}\) :

Chemical potential of component i J·mol1

\(\mu_{i}^{0}\) :

Chemical potential of pure subcooled liquid of component i J·mol1·

k, i, j :

Component k, i, j

cal:

Calculated value

exp:

Experimental value

s :

Solid phase

l :

Liquid phase

References

  1. Xu, P.D., Wu, J., Wang, H., Han, S., Zhu, J., Fu, Q.L., Geng, M.J., Hu, H.Q., Huang, Q.Y.: Long-term partial substitution of chemical fertilizer with green manure regulated organic matter mineralization in paddy soil dominantly by modulating organic carbon quality. Plant Soil. 468, 459–473 (2021). https://doi.org/10.1007/s11104-021-05130-5

    Article  CAS  Google Scholar 

  2. Xie, J., Wu, X., Tang, J.J., Zhang, J.E., Chen, X.: Chemical fertilizer reduction and soil fertility maintenance in rice-fish coculture system. Front. Agric. China 4, 422–429 (2010). https://doi.org/10.1007/s11703-010-1049-z

    Article  Google Scholar 

  3. Liu, R.H., Kang, Y.H., Zhang, C., Pei, L., Wan, S.Q., Jiang, S.F., Liu, S.P., Ren, Z.Y., Yang, Y.: Chemical fertilizer pollution control using drip fertigation for conservation of water quality in Danjiangkou Reservoir. Nutr. Cycl. Agroecosyst. 98, 295–307 (2014). https://doi.org/10.1007/s10705-014-9612-2

    Article  CAS  Google Scholar 

  4. Xia, Q.J., Wang, Q.L., Liu, Q.H., Xiong, H.F., Liu, X.W., Li, M., Zhang, F., Cheng, W., Zhao, W.: Effects of water-soluble organic fertilizer combined with inorganic fertilizer on production, quality and nutrient utilization of Chinese cabbage. Hubei Agric. Sci. 53, 5087–5091 (2014). https://doi.org/10.14088/j.cnki.issn0439-8114.2014.21.009

    Article  Google Scholar 

  5. Davidson, D., Gu, F.X.: Materials for sustained and controlled release of nutrients and molecules to support plant growth. J. Agric. Food Chem. 60, 870–876 (2012). https://doi.org/10.1021/jf204092h

    Article  CAS  Google Scholar 

  6. Fu, Q.Q., Zheng, R.Y., Li, W.H., Chen, H.K., Zhen, S.: Production process for solid water-soluble fertilizer. Phos. Comp. Ferti. 34, 20–22 (2019)

    Google Scholar 

  7. Jiang, C.J., Cheng, G.L.: Progress in co-crystallization as a separation technology. Chem. Ind. Eng. Prog. 39, 311–319 (2020). https://doi.org/10.16085/j.issn.1000-6613.2019-0620

    Article  CAS  Google Scholar 

  8. Zhang, C.T., Wang, X., Wang, H.R., Liang, W.D., Zhao, L.: Advances in co-crystallization process. Modern Chem. Ind. 35(63–66), 68 (2015). https://doi.org/10.16606/j.cnki.issn0253-4320.2015.01.004

    Article  Google Scholar 

  9. Xie, C.G., Zhang, T., Wang, X.L., Zhong, B.H., Tang, S.W.: Solid–liquid phase equilibria in aqueous solutions of four common fertilizers at 303.2 K and atmospheric pressure. Fluid Phase Equil. 474, 131–140 (2018). https://doi.org/10.1016/j.fluid.2018.07.016

    Article  CAS  Google Scholar 

  10. Hu, X., Zhu, J., Wang, R.Z., Li, H.G., Li, T.X.: Research on phase equilibrium of ternary system of CO(NH2)2–, NH4H2PO4–H2O at 10℃. Inorg. Chem. Ind. 51, 41–44 (2019)

    Google Scholar 

  11. Wu, Q., Hu, X., Zhu, J., Yang, J.M., Li, T.X.: (2020) Phase equilibrium of KH2PO4–KCl–H2O and NH4H2PO4–NH4Cl–H2O ternary system at 283.15 K. Inorg. Chem. Ind. 52, 24–28 (2020). https://doi.org/10.11962/1006-4990.2019-0639

    Article  Google Scholar 

  12. Yang, J.M., Zhu, J., Hu, X., Wu, Q., Li, T.X.: Determination and correlation for solid–liquid phase equilibrium, of ternary KCl–NH4Cl–H2O and KH2PO4–NH4H2PO4–H2O systems at 283.15K. Inorg. Chem. Ind. 53, 30–35 (2021). https://doi.org/10.11962/1006-4990.2020-0103

    Article  Google Scholar 

  13. Xiao, Y., Su, J.L., Cao, H.T.: (Solid + liquid) phase equilibrium in the aqueous ternary system NaH2PO4 + CO(NH2)2 + H2O at (308.15, 328.15, and 348.15) K. J. Chem. Eng. Data. 60, 2162–2166 (2015). https://doi.org/10.1021/acs.jced.5b00293

    Article  CAS  Google Scholar 

  14. Wang, X.L., Zhu, J., Wu, Q., Yang, J.M., Huang, L.C., Li, T.X.: Phase equilibrium of quaternary system NH4+, K+//H2PO4-, CO(NH2)2–H2O at 298.15 K. Chem. Eng. ( China) 49, 39–44 (2021). https://doi.org/10.3969/j.issn.1005-9954.2021.08.008

    Article  Google Scholar 

  15. Cao, J.L., Liu, X.W., Xue, L.J., Ma, M.L.: Phase equilibrium of the ternary NH4Cl–CO(NH2)2–H2O system at 25 °C and 35 °C. J. Chem. Eng. Chinese Univ. 21, 864–868 (2007). https://doi.org/10.3321/j.issn:1003-9015.2007.05.024

    Article  CAS  Google Scholar 

  16. Lv, B.L.: The correlation of activity coefficients for the electrolyte-nonelectrolyte mixed solution. Acta Chimica Sinica (English Edition) 4, 283–293 (1986). https://doi.org/10.1002/cjoc.19860040402

    Article  Google Scholar 

  17. Prausnitz, J.M., Lichtenthaler, R.N., de Azevedo, E.G.: Molecular Thermodynamics of Fluid-Phase of Equilibria, 3rd edn. Prentice Hall PTR, New Jersey (1999)

    Google Scholar 

  18. Wilson, G.M.: Vapor–liquid equilibrium. XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 862, 127–130 (1964). https://doi.org/10.1021/ja01056a002

    Article  Google Scholar 

  19. Renon, H., Prausnitz, J.M.: Estimation of parameters for the NRTL equation for excess Gibbs energies of strongly nonideal liquid mixtures. Ind. Eng. Chem. Process Des. Dev. 8, 413–419 (1969). https://doi.org/10.1021/i260031a019

    Article  CAS  Google Scholar 

  20. Vetere, A.: A simple modification of the NRTL equation. Fluid Phase Equil. 173, 57–64 (2000). https://doi.org/10.1016/S0378-3812(00)00400-3

    Article  CAS  Google Scholar 

  21. Huang, L.C., Li, T.X., Yang, J.M., Wang, X.L., Ou, J., Zhu, J.: Determination and correlation of solid-liquid equilibrium of ternary system KH2PO4–CO(NH2)2–H2O at 283.15K. Chem. Ind. Eng. 38, 64–69 (2021). https://doi.org/10.13353/j.issn.1004.9533.20201018

    Article  CAS  Google Scholar 

  22. Sun, W., Qi, F.: Analysis on effect of sample weight on chloridion determination result in fertilizer. Chem. Eng. 29, 34–36 (2015). https://doi.org/10.16247/j.cnki.23-1171/tq.20150434

    Article  CAS  Google Scholar 

  23. Wang, J.W., Zhang, J.L., Sun, X., Liu, L.H., Yue, B.M.: Improvement of determination method of chloride ion content in compound fertilizer. Phos. Comp. Ferti. 35, 39–40 (2020)

    Google Scholar 

  24. Basova, E.M., Bulanova, M.A., Ivanov, V.M.: Photometric detection of urea in natural waters. Moscow Univ. Chem. Bull. 66, 345–350 (2011). https://doi.org/10.3103/S0027131411060022

    Article  Google Scholar 

  25. Liu, Z.G., Zhao, Q.L., Sun, L.X., Qiu, W.: Determination of medium concentration urea in solution by p-dimethylaminobenzaldehyde colorimetry. J. Harbin Inst. Tech. 40, 1214–1217 (2008). https://doi.org/10.3321/j.issn:0367-6234.2008.08.008

    Article  CAS  Google Scholar 

  26. Shott, H.: A mathematical extrapolation for the method of wet residues. J. Chem. Eng. Data 6, 324–324 (1961). https://doi.org/10.1021/je00103a002

    Article  Google Scholar 

  27. Liu, G.Q., Ma, L.X., Liu, J.: The Data Book of Physical Properties on Chemistry and Chemical Engineering – Inorganic. Chemistry Industry Press, Beijing (2002)

    Google Scholar 

  28. China Global Chem. Eng. Corp.: Nitrogen Fertilizer Process Design Manual-Urea. Chemistry Industry Press, Beijing (1988)

    Google Scholar 

  29. Huang, C.X., Fang, Y., Wang, J., Gao, Y.J., Ju, C.H., Leng, Y.X.: Measurement and modelling of ternary solid–liquid phase equilibrium of (DL-malic acid + maleic acid + water) from 283.15K to 333.15K. J. Chem. Thermodynamics. 159, 106470–106478 (2021). https://doi.org/10.1016/j.jct.2021.106470

    Article  CAS  Google Scholar 

  30. Walas, S.M.: Phase Equilibria in Chemical Engineering[M]. Butterworth (1985)

    Google Scholar 

  31. Renon, H., Prausnitz, J.M.: Local composition thermodynamic excess functions for liquid mixtures. Aiche J. 14(1), 135–144 (1968). https://doi.org/10.1002/aic.690140124

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the supports of the National Natural Science Foundation of China (21868010) and the Science and Technology Programs of Guizhou Province ((2018) 5781).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhu.

Ethics declarations

Conflict of interest

All authors have no conflict of interests/competing interests.

Consent for Publications

The manuscript does not be submitted to more than one journal for simultaneous consideration. The submitted work is original and have not been published elsewhere in any form or language (partially or in full), unless the new work concerns an expansion of previous work. The submitted work is a single study, which does not be split up into several parts to increase the quantity of submissions and submitted to various journals or to one journal over time.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, W., Li, T., Huang, L. et al. Solid–Liquid Phase Equilibrium of the Ternary System NH4Cl-(NH2)2CO-H2O at Multiple Temperatures. J Solution Chem 52, 201–217 (2023). https://doi.org/10.1007/s10953-022-01224-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01224-5

Keywords

Navigation