Skip to main content
Log in

Correlation between the Efficiency of Singlet Oxygen Generation and the Luminescence Parameters of Photosensitizers

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The quantum yield of interconversion to triplet states for free-base 2,3,7,8,12,13,17,18-octaethylporphyrin and 5,10,15,20-tetraphenylporphyrin, as well as of metallocomplexes with Mg(II), Zn(II), Pd(II), and Pt(II) ions, have been defined based on the data on the efficiency of photosensitized singlet oxygen generation. The quantum yields of singlet oxygen generation were measured for above mentioned compounds in different solvents. The maximum values of quantum yields of singlet oxygen generation are take place for compounds with heavy ions of Pd(II) and Pt(II) that due to intensification of internal heavy atom effect on intersystem crossing. The high quantum yields of singlet oxygen generation for case of free-base porphyrins indicate strong spin–orbit coupling in the absence of the internal heavy atom effect for these compounds. The specific features of the internal heavy atom effect on the triplet state deactivation rates for some porphyrins with Pd(II) and Pt(II) ions at room temperature and at 77 K were estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Singlet Oxygen: Applications in Biosciences and Nanosciences, Vol. 13 of Comprehensive Series in Photochemical, Ed. by S. Nonell and C. Flor (RSC, Cambridge, UK, 2016), Vol. 1, p. 23. https://doi.org/10.1039/9781782622208

    Book  Google Scholar 

  2. C. Schweitzer and R. Schmidt, Chem. Rev. 103, 1685 (2003). https://doi.org/10.1021/cr010371d

    Article  Google Scholar 

  3. A. Buglak, M. A. Filatov, M. A. Hussain, and M. Sugimoto, J. Photochem. Photobiol. A 403, 112833 (2020). https://doi.org/10.1016/j.jphotochem.2020.112833

    Article  Google Scholar 

  4. K. Kopecky and H. Reich, Can. J. Chem. 43, 15 (1965).

    Article  Google Scholar 

  5. C. Marian, Adv. Rev. 2, 187 (2012). https://doi.org/10.1002/wcms.83

    Article  Google Scholar 

  6. S. Perun, J. Tatchen, and C. Marian, Chem. Phys. Chem. 9, 282 (2008). https://doi.org/10.1002/cphc.200700509

    Article  Google Scholar 

  7. S. Y. Egorov, A. A. Krasnovskii, I. V. Vychegzhanina, and N. N. Drozdova, Dokl. Akad. Nauk SSSR 310, 471 (1990).

    Google Scholar 

  8. C. Grewer and H. Brauer, J. Phys. Chem. 98, 4230 (1994). https://doi.org/10.1021/j100067a006

    Article  Google Scholar 

  9. A. A. Krasnovsky and A. S. Kozlov, J. Photochem. Photobiol. A 329, 167 (2016). https://doi.org/10.1016/j.jphotochem.2016.06.026

    Article  Google Scholar 

  10. D. Asturiol and M. Barbatti, J. Chem. Phys. 139, 074307 (2013). https://doi.org/10.1063/1.4818490

    Article  ADS  Google Scholar 

  11. A. S. Starukhin, A. V. Gorski, and Ya. Z. Dobkovski, Bull. Russ. Acad. Sci.: Phys. 84, 267 (2020). https://doi.org/10.3103/S1062873820030223

    Article  Google Scholar 

  12. F. N. Terenin, Acta Phys. Chem. USSR 18, 246 (1943).

    Google Scholar 

  13. A. A. Krasnovsky, Biophys. USSR 2, 748 (1976).

    Google Scholar 

  14. A. A. Krasnovsky, Jr., J. Photochem. Photobiol. A 196, 210 (2008). https://doi.org/10.1016/j.jphotochem.2007.12.015

    Article  Google Scholar 

  15. B. M. Dzhagarov, E. I. Sagun, V. A. Ganzha, and G. P. Gurinovich, Khim. Fiz. 6, 919 (1987).

    Google Scholar 

  16. M. de Rosa and R. Crutchley, Coord. Chem. Rev. 233–234, 351 (2002). https://doi.org/10.1016/S0010-8545(02)00034-6

    Article  Google Scholar 

  17. F. Wilkinson, W. Helman, and A. Ross, Phys. Chem. 22, 113 (1993). https://doi.org/10.1063/1.555965

    Article  Google Scholar 

  18. Handbook of Photochemistry. Materials Science, 3rd ed., Ed. by M. Montalti, T. Gandolfi, A. Credi, and L. Prodi (CRC, Taylor and Francis, Boca Raton, 2006). https://doi.org/10.5860/choice.44-4456

  19. A. Adler, F. Longo, F. Kampas, and J. Kim, J. Inorg. Nucl. Chem. 32, 2443 (1970). https://doi.org/10.1016/0022-1902(70)80535-8

    Article  Google Scholar 

  20. M. da G. H. Vicente and K. M. Smith, Curr. Org. Synth. 11, 3 (2014). https://doi.org/10.2174/15701794113106660083

  21. A. Adler, R. Longo, J. Finarelli, J. Goldmacher, J. Assour, and L. Korsakoff, J. Org. Chem. 32, 476 (1967). https://doi.org/10.1021/jo01288a053

    Article  Google Scholar 

  22. A. S. Starukhin, A. V. Gorski, and M. Z. Kijak, Bull. Russ. Acad. Sci.: Phys. 82, 1560 (2018). https://doi.org/10.3103/S1062873818120225

    Article  Google Scholar 

  23. D. Eastwood and M. Gouterman, J. Mol. Spectrosc. 35, 359 (1970). https://doi.org/10.1016/0022-2852(70)90179-7

    Article  ADS  Google Scholar 

  24. A. A. Krasnovsky, A. S. Benditkis, and A. S. Kozlov, Biochemistry 84, 153 (2019). https://doi.org/10.1134/S0006297919020068

    Article  Google Scholar 

  25. O. Shimizu, J. Watanabe, K. Imakubo, and S. Naito, J. Phys. Soc. Jpn. 67, 3664 (1998). https://doi.org/10.1143/JPSJ.67.3664

    Article  ADS  Google Scholar 

  26. P. Sen, C.Hirel, A.-G. Gürek, C. Andraud, Y. Bretonnière, and M. Lindgren, J. Porphyr. Phthalocyan. 17, 965 (2013). https://doi.org/10.1142/S1088424613500739

    Article  Google Scholar 

  27. R. Schmidt, C. Tanielian, R. Dunsbach, and C. Wolff, Photochem. Photobiol. A 79, 11 (1994). https://doi.org/10.1016/1010-6030(93)03746-4

    Article  Google Scholar 

  28. M. Gouterman, F. Schwarz, and P. Smith, J. Chem. Phys. 59, 676 (1973). https://doi.org/10.1063/1.1680075

    Article  ADS  Google Scholar 

  29. K. N. Solov’ev and E. A. Borisevich, Phys. Usp. 64, 231 (2021). https://doi.org/10.1070/PU2005v048n03ABEH001761

    Article  Google Scholar 

  30. O. L. Gladkova, A. S. Starukhin, and N. N. Kruk, Opt. Spectrosc. 110, 234 (1967).

    Article  ADS  Google Scholar 

  31. V. L. Ermolaev and E. B. Sveshnikova, Acta Phys. Polon. 34, 771 (1968).

    Google Scholar 

  32. A. T. Gradyushko, A. N. Sevchenko, K. N. Solovyov, and M. P. Tsvirko, Photochem. Photobiol. 11, 387 (1970). https://doi.org/10.1111/j.1751-1097.1970.tb06011.x

    Article  Google Scholar 

  33. A. Gorski, V. Knyukshto, E. Zenkevich, A. Starukhin, M. Kijak, J. Solarski, A. Semeikin, and T. Lyubimova, J. Photochem. Photobiol. A 354, 101 (2018). https://doi.org/10.1016/j.jphotochem.2017.09.002

    Article  Google Scholar 

  34. A. T. Gradyushko and M. P. Tsvirko, Opt. Spectrosc. 31, 548 (1971).

    Google Scholar 

  35. D. Papkovsky and T. O’Riordan, J. Fluoresc. 15, 569 (2005). https://doi.org/10.1007/s10895-005-2830-x

    Article  Google Scholar 

  36. J. Darwent, P. Douglas, A. Harriman, G. Porter, and M. Richoux, Coord. Chem. Rev. 44, 83 (1982). https://doi.org/10.1016/S0010-8545(00)80518-4

    Article  Google Scholar 

  37. S. Drouet, C. Paul-Roth, V. Fattori, M. Cocchi, and J. Williams, New J. Chem. 35, 438 (2011). https://doi.org/10.1039/c0nj00561d

    Article  Google Scholar 

  38. E. I. Zen’kevich, E. I. Sagun, V. N. Knyukshto, A. M. Shul’ga, A. F. Mironov, O. A. Efremova, R. Bonnett, and M. Kaddem, J. Appl. Spectrosc. 63, 502 (1996). https://doi.org/10.1007/BF02606894

    Article  ADS  Google Scholar 

  39. W. Maes, T. Ngo, G. Rong, A.Starukhin, M. Kruk, and W. Dehaen, Eur. J. Org. Chem., 2576 (2010). https://doi.org/10.1002/ejoc.201000180

  40. M. P. Tsvirko, K. N. Solov’ev, A. T. Gradyushko, and S. S. Dvornikov, Opt. Spectrosc. 38, 400 (1967).

    ADS  Google Scholar 

  41. M. Taniguchia, J. Lindsey, D. Bocian, and D. Holten, J. Photochem. Photobiol. C 46, 100401 (2021). https://doi.org/10.1016/j.jphotochemrev.2020.100401

    Article  Google Scholar 

  42. N. V. Ivashin and S. N. Terekhov, Opt. Spectrosc. 126, 205 (1967). https://doi.org/10.1134/S0030400X19030081

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Belarusian Republican Foundation for Basic Research (project no. F20UKA-018) and the Belarusian Scientific Program “Convergence-2025” 3.03.10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Starukhin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Basieva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starukhin, A.S., Romanenko, A.A. & Plavskii, V.Y. Correlation between the Efficiency of Singlet Oxygen Generation and the Luminescence Parameters of Photosensitizers. Opt. Spectrosc. 130, 319–326 (2022). https://doi.org/10.1134/S0030400X22050046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X22050046

Keywords:

Navigation