Skip to main content
Log in

Study of the Structure of Mammoth Tusk by IR Spectroscopy

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

We studied the structure of the mammoth tusk by infrared spectroscopy, including after heat treatment. The entire complex of functional groups of the tusk components—hydroxyapatite, collagen, and water—was revealed. Collagen is represented in the IR spectrum by the characteristic absorption bands of amide and aliphatic groups. After heat treatment at 600°C, the organic part is completely removed from the sample. Hydroxyapatite occurs in the tusk bone tissues in a carbonate-substituted form; the heat treatment at 900°C removes the carbonate anion and water from the sample, transiting hydroxyapatite from a nonstoichiometric state to a stoichiometric one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. K. Janssens, L. Vincze, B. Vekemans, C. T. Williams, M. Radtke, M. Haller, and A. Knochel, Fresenius J. Anal. Chem. 363, 413 (1999). https://doi.org/10.1007/s002160051212

    Article  Google Scholar 

  2. K. M. Lee, J. Appleton, M. Cooke, K. Sawiska-Kapusta, and M. Damer, Fresenius J. Anal. Chem. 364, 245 (1999). https://doi.org/10.1007/s002160051331

    Article  Google Scholar 

  3. Y. Fernandez-Jalvo and M. D. M. Monfort, Geobios 41, 157 (2008). https://doi.org/10.1016/j.geobios.2006.06.006

    Article  Google Scholar 

  4. I. Revenko, F. Sommer, D. T. Minh, and R. Garrone, J. Franc. Biol. Cell 80, 67 (1994). https://doi.org/10.1016/0248-4900(94)90019-1

    Article  Google Scholar 

  5. V. I. Nikolaev, M. Barbieri, S. Davanzo, T. V. Kuznetsova, A. Lonzhinelli, L. D. Sulerzhitskii, and P. Yakumin, in Quarter-2005, Proceedings of the IV All-Russia Meetings on the Study of the Quaternary Period, Ed. by N. P. Yushkin (Geoprint, Syktyvkar, 2005), p. 297.

  6. M. L. Zorina, A. B. Kol’tsov, O. V. Frank-Kamenetskaya, and O. V. Ozarovskaya, Istor. Geol. Evol. Geogr., No. 4, 51 (2004).

  7. O. V. Ozarovskaya and M. L. Zorina, Zap. Ross. Mineral. Ob-va 137 (5), 73 (2008).

    Google Scholar 

  8. L. Wang, H. Fan, J. Liu, H. Dan, Q. Ye, and M. Deng, Mineral. Mag. 71, 509 (2007). https://doi.org/10.1180/minmag.2007.071.5.509

    Article  Google Scholar 

  9. H. Edwards, S. Jorge-Villar, F. Nik, A. Nlin, S. O’Connor, and D. Charlton, Anal. Bioanal. Chem. 383, 713 (2005). https://doi.org/10.1007/s00216-005-0011-z

    Article  Google Scholar 

  10. L. E. Cartier, M. S. Krzemnicki, M. Gysi, B. Lendvay, and N. V. Morf, J. Gemmol. 37, 282 (2020). https://doi.org/10.15506/JoG.2020.37.3.282

  11. M. Ch. Chang and J. Tanaka, Biomaterials 23, 4811 (2002). https://doi.org/10.1016/S0142-9612(02)00232-6

    Article  Google Scholar 

  12. C. Chappard, G. Andre, M. Daudon, and D. Barin, C. R. Chim. 19, 1625 (2016). https://doi.org/10.1016/j.crci.2015.03.015

    Article  Google Scholar 

  13. A. Grunenwald, C. Keyser, A. M. Sautereau, E. Crubery, B. Ludes, and C. Drouet, J. Archaeol. Sci. 49, 134 (2014). https://doi.org/10.1016/j.jas.2014.05.004

    Article  Google Scholar 

  14. K. Haberko, M. Bucko, J. Brzezinska-Miecznik, M. Haberko, W. Mozgawa, T. Panz, A. Pyda, and J. Zarebski, J. Eur. Ceram. Soc. 26, 537 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.07.033

    Article  Google Scholar 

  15. T. Sakae, H. Oinuma, M. Higa, and Y. Kozawa, J. Oral Biosci. 47, 83 (2005). https://doi.org/10.1016/S1349-0079(05)80013-1

    Article  Google Scholar 

  16. V. M. Zolotarev and G. A. Khlopachev, Opt. Spectrosc. 114, 946 (2013). https://doi.org/10.1134/S0030400X13040231

    Article  ADS  Google Scholar 

  17. S. L. Votyakov, D. V. Kiseleva, Yu. V. Shchapova, N. G. Smirnov, and N. O. Sadykova, Physico-Chemical Characteristics of Fossil Bone Remains of Mammals and the Problem of Assessing their Relative Age. Part 1. Thermal and Mass Spectrometric Elemental Analysis (Goshitskii, Ekaterinburg, 2009) [in Russian].

    Google Scholar 

  18. S. L. Votyakov, D. V. Kiseleva, Yu. V. Shchapova, N. G. Smirnov, and N. O. Sadykova, Physico-Chemical Characteristics of Fossil Bone Remains of Mammals and the Problem of Assessing their Relative Age. Part 2. IR and Radio Spectroscopy, Microscopy (Goshitskii, Ekaterinburg, 2009) [in Russian].

    Google Scholar 

  19. V. M. Zolotarev, Opt. Spectrosc. 116, 599 (2014). https://doi.org/10.1134/S0030400X14040286

    Article  ADS  Google Scholar 

  20. V. I. Silaev, D. V. Ponomarev, Yu. S. Simakova, S. N. Shanina, I. V. Smoleva, E. M. Tropnikov, and A. F. Khazov, Vestn. Inst. Geol. Komi NTs UrO RAN 257 (5), 19 (2016). https://doi.org/10.19110/2221-1381-2016-5-19-31

    Article  Google Scholar 

  21. M. J. Glimcher, Rev. Miner. Geochem. 64, 223 (2006). https://doi.org/10.2138/rmg.2006.64.8

    Article  Google Scholar 

  22. T. M. Solovev, E. S. Petukhova, G. V. Botvin, T. A. Isakova, and V. V. Pavlova, IOP Conf. Ser.: Mater. Sci. Eng. 1079, 042011 (2021). https://doi.org/10.1088/1757-899X/1079/4/042011

  23. S. N. Danil’chenko, Visn. SumDu, Ser. Fiz., Mat., Mekh., No. 2, 33 (2007).

  24. R. G. Knubovets and L. D. Kislovskii, in Physics of Apatite, Collection of Articles, Ed. by V. S. Sobolev (Nauka, Novosibirsk, 1975) [in Russian].

    Google Scholar 

  25. A. B. Brik, O. V. Frank-Kamenetskaya, V. A. Dubok, E. A. Kalinichenko, M. A. Kuz’mina, M. L. Zorina, N. A. Dudchenko, A. M. Kalinichenko, and N. N. Bagmut, Mineral. Zh. 35 (3), 3 (2013).

    Google Scholar 

  26. L. G. Gilinskaya, T. N. Grigor’eva, Yu. N. Zanin, T. A. Korneva, and V. N. Stolpovskaya, Geochem. Int. 39, 244 (2001).

    Google Scholar 

  27. T. M. de Batista, V. C. A. Martins, and A. M. de Guzzi Plepis, J. Therm. Anal. Calorim. 95, 945 (2009). https://doi.org/10.1007/s10973-007-8897-7

    Article  Google Scholar 

  28. A. Onishi, P. S. Thomas, B. H. Stuart, et al., J. Therm. Anal. Calorim. 88 (2), 405 (2007). https://doi.org/10.1007/s10973-006-8135-8

    Article  Google Scholar 

  29. J. Shi, A. Klocke, M. Zhang, and U. Bismayer, Eur. J. Miner. 17, 769 (2005). https://doi.org/10.1127/0935-1221/2005/0017-0769

    Article  Google Scholar 

  30. G. A. Khlopachev and E. Yu. Girya, Secrets of Ancient Bone Carvers of Eastern Europe and Siberia: Mammoth Tusk and Reindeer Horn Processing Techniques in the Stone Age (According to Archaeological and Experimental Data) (Nauka, St. Petersburg, 2010) [in Russian].

    Google Scholar 

Download references

Funding

The work was supported within the framework of the state order no. AAAA-A20-120011490003-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Isakova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlova, V.V., Petukhova, E.S., Isakova, T.A. et al. Study of the Structure of Mammoth Tusk by IR Spectroscopy. Opt. Spectrosc. 130, 207–213 (2022). https://doi.org/10.1134/S0030400X22030110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X22030110

Keywords:

Navigation