Skip to main content
Log in

Microbial Utilization of Glycine Betain in Hypersaline Soda Lakes

  • EXPERIMENTAL ARTICLES
  • Published:
Microbiology Aims and scope Submit manuscript

Abstract

Glycine betaine (GB) is a biologically important compound for microbial communities living in saline habitats most commonly employed as an organic osmolyte. At fluctuating salinity, halophilic microbes producing GB excrete it into environment making it available for heterotrophic/methylotrophic community members as a source of carbon, energy and nitrogen. Although many halolalkaliphilic bacteria have a potential for synthesis of GB as the main osmolyte, so far there was no targeted investigation of its microbial mineralization at soda lake conditions. In this work GB was used as substrate to enrich for GB-utilizing bacteria and archaea from sediments of hypersaline soda lakes located in southwestern Siberia. Aerobic enrichments at moderate and soda-saturated conditions (pH 10) resulted in isolation of several gammaproteobacterial strains identical in its 16S RNA gene to each other and to the known species Halomonas alkalicola. These isolates grew equally well with several methylated compounds: methylglycine (sarcosine), dimethylglycine (DMG), GB and choline (trimethylethanolamine). No growth was observed in aerobic hypersaline enrichments in presence of antibiotics indicating that bacteria are the main mineralizers of GB in hypersaline soda lakes at oxic conditions. In contrast, an anaerobic enrichment at 4 M Na+ and pH 9.7 targeting GB-utilizing haloalrchea was positive with sulfur as electron acceptor and resulted in isolation of a pure natronarchaeal culture belonging to the previously described genus of sulfur-reducing haloarchaea Halalkaliarchaeum. Anaerobic enrichments with GB at fermentative conditions were positive at salinities 2−4 M total Na+ (pH 10) and consisted of a bacterial component forming trimethyamine (TMA) and methylotrophic methanogens consuming the latter. In both cases the bacterial component belonged to the genus Natroniella (Halanaerobiia), while the methanogenic partner at 2 M Na+ was identified as Methanosalsum natronophilum and at 4 M Na+/48°C—as members of the methyl-reducing genus Methanonatronarchaeum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Augustin, P., Hromic, A., Pavkov-Keller, T., Gruber, K., and Macheroux, P., Structure and biochemical properties of recombinant human dimethylglycine dehydrogenase and comparison to the disease-related H109R variant, FEBS J., 2016, vol. 283, pp. 3587–3603.

    Article  CAS  Google Scholar 

  2. Christman, G.D., León-Zayas, R.I., Summers, Z.M., and Biddle, J.F., Methanogens within a high salinity oil reservoir from the Gulf of Mexico, Front. Microbiol. 2020, vol. 11, 570714.

    Article  Google Scholar 

  3. Creighbaum, A.J., Ticak, T., Shinde, S., Wang, X., and Ferguson, D.J., Jr., Examination of the glycine betaine-dependent methylotrophic methanogenesis pathway: insights into anaerobic quaternary amine methylotrophy, Front. Microbiol., 2019, vol. 10, 2572.

    Article  Google Scholar 

  4. da Costa, M.S., Santos, H., and Galinski, E.A., An overview of the role and diversity of compatible solutes in bacteria and archaea, Adv. Biochem. Engineer./Biotechnol., Scheper, Th., Ed., Berlin: Springer, 1998, vol. 61, pp. 117–152.

    Google Scholar 

  5. Daly, R., Borton, M., Wilkins, M., Hoyt, D.W., Kountz, D.J., and Wolfe, R.A., Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales, Nat. Microbiol. 2016, vol. 1, 16146.

    Article  CAS  Google Scholar 

  6. Heijthuijsen, J.H.F.G. and Hansen, T.A., Betaine fermentation and oxidation by marine Desulfuromonas strains, Ap-pl. Environ. Microbiol., 1989a, vol. 154, pp. 965–969.

    Article  Google Scholar 

  7. Heijthuijsen, J.H.F.G. and Hansen, T.A., Anaerobic degradation of betaine by marine Desulfobacterium strains, Arch. Microbiol., 1989b, vol. 152, pp. 393–396.

    Article  CAS  Google Scholar 

  8. Hormann, K. and Andreesen, J.R., Reductive cleavage of sarcosine and betaine in Eubacterium acidaminophilum via enzyme systems different from glycine reductase, Arch. Microbiol., 1989, vol. 153, pp. 50–59.

    Article  CAS  Google Scholar 

  9. Jones, H.J., Kröber, E., Stephenson, J., Mausz, M.A., Jameson, E., Millard, A., Purdy, K.J., and Chen, Y., A new family of uncultivated bacteria involved in methanogenesis from the ubiquitous osmolyte glycine betaine in coastal saltmarsh sediments, Microbiome, 2019, vol. 7, 120.

    Article  Google Scholar 

  10. La Cono, V., Arcadi, E., Spada, G.L., Barreca, D., Laganà, G., Bellocco, E., Catalfamo, M., Smedile, F., Messina, E., Giuliano, L., and Yakimov, M.M., A three-component microbial consortium from deep-sea salt-saturated anoxic Lake Thetis links anaerobic glycine betaine degradation with methanogenesis, Microorganisms 2015, vol. 3, pp. 500–517. Meskys R., Harris, R.J., Casaite, V., Basran, J., and Scrutton, N.S., Organization of the genes involved in dimethylglycine and sarcosine degradation in Arthrobacter spp. implications for glycine betaine catabolism, Eur. J. Biochem., 2001, vol. 268, pp. 3990–3998.

    Google Scholar 

  11. Meyer, M., Granderath, K., and Andreesen, J.R., Purification and characterization of protein P, of betaine reductase and its relationship to the corresponding proteins glycine reductase and sarcosine reductase from Eubacterium acidaminophilum, Eur. J. Biochem., 1995, vol. 234, pp. 184–191.

    Article  CAS  Google Scholar 

  12. Möller, B., Oßmer, R., Howard, B.H., Gottschalk, G., and Hippe, H., Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata spec. nov., Arch. Microbiol., 1984, vol. 139, pp. 388–396.

    Article  Google Scholar 

  13. Mouné, S., Mana\({\text{c'}}\)h, N., Hirschler, A., Caumette, P., WiIlison, J.C., and Matheron, R., Haloanaerobacter salinarius sp. nov., a novel halophilic fermentative bacterium that reduces glycine-betaine to trimethylamine with hydrogen or serine as electron donors; emendation of the genus Haloanaerobacter, Int. J. Syst. Bacteriol., 1999, vol. 49, pp. 103–112.

    Article  Google Scholar 

  14. Müller, E., Fahlbusch, K., Walther, R., and Gottschalk, G., Formation of N,N-dimethylglycine, acetic acid and butyric acid from betaine by Eubacterium limosum, Appl. Environ. Microbiol., 1981 vol. 42, pp. 439–445.

    Article  Google Scholar 

  15. Nigro, L.M., Elling, F.J., Hinrichs, K.U., Joye, S.B., and Teske, A., Microbial ecology and biogeochemistry of hypersaline sediments in Orca Basin, PLoS One, 2020, vol. 15, e0231676.

    Article  CAS  Google Scholar 

  16. Nigro, L.M., Hyde, A.S., MacGregor, B.J., and Teske, A., Phylogeography, salinity adaptations and metabolic potential of the Candidate division KB1 bacteria based on a partial single cell genome, Front. Microbiol., 2016, vol. 7, 1266.

    Article  Google Scholar 

  17. Oren, A., Formation and breakdown of glycine betaine and trimethylamine in hypersaline environments, Antonie van Leeuwenhoek, 1990 vol. 58, pp. 291–298.

    Article  CAS  Google Scholar 

  18. Pfennig, N. and Lippert, K.D., Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien, Arch. Mikrobiol., 1966, vol. 55, pp. 245–256.

    Article  CAS  Google Scholar 

  19. Plugge, C.M., Anoxic media design, preparation, and considerations, Methods Enzymol., 2005, vol. 397, pp. 3–16.

    Article  CAS  Google Scholar 

  20. Roeûler, M., and Möller, V., Osmoadaptation in bacteria and archaea: common principles and differences, Environ. Microbiol., 2001, vol. 3, pp. 743–754.

    Article  Google Scholar 

  21. Roberts, M.F., Organic compatible solutes of halotolerant and halophilic microorganisms, Saline Systems, 2001, vol. 1, 1.

  22. Robertson, D.E., Noll, D., Roberts, M.F., Menaia, J.A.G.F., and Boone, D.R., Detection of the osmoregulator betaine in methanogens, Appl. Environ. Microbiol., 1990, vol. 56, pp. 563–565.

    Article  CAS  Google Scholar 

  23. Shao, Y.-H., Guo, L.-Z., Yu, H., Zhao, B.‑S., and Lua, W.-D., Establishment of a markerless gene deletion system in Chromohalobacter salexigens DSM 3043, Extremophiles, 2017, vol. 21, pp. 839–850.

    Article  CAS  Google Scholar 

  24. Shao, Y.-H., Guo, L.-Z., Zhang, Y.-Q., Yu, H., Zhao, B.‑S., Pang, H.-Q., and Lu, W.-D., Glycine betaine monooxygenase, an unusual rieske-type oxygenase system, catalyzes the oxidative N-demethylation of glycine betaine in Chromohalobacter salexigens DSM 3043, Appl. Environ. Microbiol., 2018, vol. 84, e00377-18.

    Article  CAS  Google Scholar 

  25. Sorokin, D.Y., Abbas, B.A., Sinninghe Damsté, J.S., Sukhacheva, M.V., and van Loosdrecht, M.C.M., Methanocalculus alkaliphilus sp. nov., and Methanosalsum natronophilum sp. nov., novel haloalkaliphilic methanogens from hypersaline soda lakes, Int. J. Syst. Evol. Microbiol., 2015, vol. 65, pp. 3739–3745.

    Article  CAS  Google Scholar 

  26. Sorokin, D.Y., Makarova, K.S., Abbas, B., Ferrer, M., Golyshin, P.N., Galinski, E.A., Ciordia, S., Mena, M.C., Merkel, A.Y., Wolf, Y.I., van Loosdrecht, M.C.M., and Koonin, E.V., Discovery of extremely halophilic, methyl-reducing euryarchaea provides insights into the evolutionary origin of methanogenesis, Nature Microbiol., 2017, vol. 2, p. 17081.

    Article  CAS  Google Scholar 

  27. Sorokin, D.Y., Merkel, A.Y., Abbas, B., Makarova, K., Rijpstra, W.I.C., Koenen, M., Sinninghe Damsté, J.S., Galinski, E.A., Koonin, E.V., and van Loosdrecht, M.C.M., Methanonatronarchaeum thermophilum gen. nov., sp. nov, and “Candidatus Methanohalarchaeum thermophilum”— extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes representing a novel euryarchaeal class Methanonatronarchaeia classis nov., Int. J. Syst. Evol. Microbiol., 2018, vol. 68, pp. 2199–2208.

  28. Steenkamp, D.J. and Husain, M., The effect of tetrahydrofolate on the reduction of electron transfer flavoprotein by sarcosine and dimethylglycine dehydrogenases, Biochem. J., 1982, vol. 203, pp. 707–715.

    Article  CAS  Google Scholar 

  29. Tang, X., Zhai, L., Lin, Y., Yao, S., Wang, L., Ge, Y., Liu, Y., Zhang, X., Zhang, T., Zhang, L., Liu, J., and Cheng, C., Halomonas alkalicola sp. nov., isolated from a household product plant, Int. J. Syst. Environ. Microbiol., 2017, vol. 67, pp. 1546–1550.

    Article  Google Scholar 

  30. Ticak, T., Hariraju, D., Arcelay, M.B., Arivett, B.A., Fiester, S.E., and Ferguson, D.J., Jr., Isolation and characterization of a tetramethylammonium-degrading Methanococcoides strain and a novel glycine betaine-utilizing Methanolobus strain, Arch. Microbiol. 2015, vol. 197, pp. 197–209.

    Article  CAS  Google Scholar 

  31. Ticak, T., Kountz, D.J., Girosky, K.E., Krzycki, J.A., and Ferguson, D.J., A nonpyrrolysine member of the widely distributed trimethylamine methyltransferase family is a glycine betaine methyltransferase, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, pp. 4668–4676.

    Article  Google Scholar 

  32. Visser, M., Pieterse, M.M., Pinkse, M.W.H., Nijsse, B., Verhaert, P.D.E.M., de Vos, W.M., Schaap, P.J., and Stams, A.J.M., Unraveling the one-carbon metabolism of the acetogen Sporomusa strain An4 by genome and proteome analysis, Environ. Microbiol., 2016, vol. 18, pp. 2843–2855.

    Article  CAS  Google Scholar 

  33. Wargo, M.J., Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa, Appl. Environ. Microbiol., 2013, vol. 79, pp. 2112–2120.

    Article  CAS  Google Scholar 

  34. Watkins, A.J., Roussel, E.G., Parkes, R.J., and Sass, H., Glycine betaine as a direct substrate for methanogens (Methanococcoides spp.), Appl. Environ. Microbiol., 2014, vol. 80, pp. 289–293.

    Article  CAS  Google Scholar 

  35. Weatherburn, M.V., Phenol-hypochlorite reaction for determination of ammonia, Anal. Chem. 1967, vol. 39, pp. 971–974.

    Article  CAS  Google Scholar 

  36. Zhilina, T.N. and Zavarzin, G.A., Extremely halophilic, methylotrophic, anaerobic bacteria, FEMS Microbiol. Lett., 1990, vol. 87, pp. 315–321.

    Article  CAS  Google Scholar 

  37. Yakimov, M.M., La Cono, V., Slepak, V.Z., La Spada, G., Arcadi, E., Messina, E., Borghini, M., Monticelli, L.S., Rojo, D., Barbas, C., Golyshina, O.V., Ferrer, M., Golyshin, P.N., and Giuliano, L., Microbial life in the Lake Medee, the largest deep-sea salt-saturated formation, Sci. Rep., 2013, vol. 3, 3554.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Ministry of Higher Education and Science and, partly, by the Gravitation-SIAM Program of the Dutch Ministry of Education and Science (grant 24002002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Y. Sorokin.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, D.Y. Microbial Utilization of Glycine Betain in Hypersaline Soda Lakes. Microbiology 90, 569–577 (2021). https://doi.org/10.1134/S0026261721050143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026261721050143

Keywords:

Navigation