Skip to main content
Log in

Animal Models of FUS-Proteinopathy: A Systematic Review

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Mutations that disrupt the function of the DNA/RNA-binding protein FUS could cause amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. One of the key features in ALS pathogenesis is the formation of insoluble protein aggregates containing aberrant isoforms of the FUS protein in the cytoplasm of upper and lower motor neurons. Reproduction of human pathology in animal models is the main tool for studying FUS-associated pathology and searching for potential therapeutic agents for ALS treatment. In this review, we provide a systematic analysis of the role of FUS protein in ALS pathogenesis and an overview of the results of modelling FUS-proteinopathy in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

References

  1. Mehta, P., Raymond, J., Punjani, R., Larson, T., Han, M., Bove, F., and Horton, D. K. (2022) Incidence of amyotrophic lateral sclerosis in the United States, 2014-2016, Amyotroph. Lateral Scler. Frontotemporal Degener., 23, 378-382, https://doi.org/10.1080/21678421.2021.2023190.

    Article  PubMed  Google Scholar 

  2. Mehta, P., Kaye, W., Raymond, J., Punjani, R., Larson, T., Cohen, J., Muravov, O., and Horton, K. (2018) Prevalence of Amyotrophic Lateral Sclerosis – United States, 2015, MMWR. Morbidity and Mortality Weekly Report, 67, 1285-1289, https://doi.org/10.15585/mmwr.mm6746a1.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Longinetti, E., and Fang, F. (2019) Epidemiology of amyotrophic lateral sclerosis: an update of recent literature, Curr. Opin. Neurol., 32, 771-776, https://doi.org/10.1097/wco.0000000000000730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou, S., Zhou, Y., Qian, S., Chang, W., Wang, L., and Fan, D. (2018) Amyotrophic lateral sclerosis in Beijing: Epidemiologic features and prognosis from 2010 to 2015, Brain Behav., 8, e01131, https://doi.org/10.1002/brb3.1131.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jun, K. Y., Park, J., Oh, K. W., Kim, E. M., Bae, J. S., Kim, I., and Kim, S. H. (2019) Epidemiology of ALS in Korea using nationwide big data, J. Neurol. Neurosurg. Psychiatry, 90, 395-403, https://doi.org/10.1136/jnnp-2018-318974.

    Article  PubMed  Google Scholar 

  6. Abramycheva, N. Y., Lysogorskaia, E. V., Stepanova, M. S., Zakharova, M. N., Kovrazhkina, E. A., Razinskaya, O. D., Smirnov, A. P., Maltsev, A. V., Ustyugov, A. A., Kukharsky, M. S., Khritankova, I. V., Bachurin, S. O., Cooper-Knock, J., Buchman, V. L., Illarioshkin, S. N., Skvortsova, V. I., and Ninkina, N. (2015) C9ORF72 hexanucleotide repeat expansion in ALS patients from the Central European Russia population, Neurobiol. Aging, 36, 2908.e2905-2909, https://doi.org/10.1016/j.neurobiolaging.2015.07.004.

    Article  CAS  Google Scholar 

  7. Brylev, L., Ataulina, A., Fominykh, V., Parshikov, V., Vorobyeva, A., Istomina, E., Shikhirimov, R., Salikov, A., Zakharova, M., Guekht, A., and Beghi, E. (2020) The epidemiology of amyotrophic lateral sclerosis in Moscow (Russia), Amyotrophic Lateral Scler. Frontotemporal Degener., 21, 410-415, https://doi.org/10.1080/21678421.2020.1752252.

    Article  Google Scholar 

  8. Landrum, M. J., Lee, J. M., Benson, M., Brown, G. R., Chao, C., Chitipiralla, S., Gu, B., Hart, J., Hoffman, D., Jang, W., Karapetyan, K., Katz, K., Liu, C., Maddipatla, Z., Malheiro, A., McDaniel, K., Ovetsky, M., Riley, G., Zhou, G., Holmes, J. B., et al. (2018) ClinVar: improving access to variant interpretations and supporting evidence, Nucleic Acids Res., 46, D1062-D1067, https://doi.org/10.1093/nar/gkx1153.

    Article  CAS  PubMed  Google Scholar 

  9. Brenner, D., and Weishaupt, J. H. (2019) Update on amyotrophic lateral sclerosis genetics, Curr. Opin. Neurol., 32, 735-739, https://doi.org/10.1097/wco.0000000000000737.

    Article  CAS  PubMed  Google Scholar 

  10. Taylor, J. P., Brown, R. H., Jr., and Cleveland, D. W. (2016) Decoding ALS: from genes to mechanism, Nature, 539, 197-206, https://doi.org/10.1038/nature20413.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  11. Cooper-Knock, J., Hewitt, C., Highley, J. R., Brockington, A., Milano, A., Man, S., Martindale, J., Hartley, J., Walsh, T., Gelsthorpe, C., Baxter, L., Forster, G., Fox, M., Bury, J., Mok, K., McDermott, C. J., Traynor, B. J., Kirby, J., Wharton, S. B., Ince, P. G., et al. (2012) Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72, Brain, 135, 751-764, https://doi.org/10.1093/brain/awr365.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Farr, G. W., Ying, Z., Fenton, W. A., and Horwich, A. L. (2011) Hydrogen-deuterium exchange in vivo to measure turnover of an ALS-associated mutant SOD1 protein in spinal cord of mice, Protein Sci., 20, 1692-1696, https://doi.org/10.1002/pro.700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McAlary, L., Plotkin, S. S., Yerbury, J. J., and Cashman, N. R. (2019) Prion-like propagation of protein misfolding and aggregation in amyotrophic lateral sclerosis, Front. Mol. Neurosci., 12, 262, https://doi.org/10.3389/fnmol.2019.00262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shiihashi, G., Ito, D., Yagi, T., Nihei, Y., Ebine, T., and Suzuki, N. (2016) Mislocated FUS is sufficient for gain-of-toxic-function amyotrophic lateral sclerosis phenotypes in mice, Brain, 139, 2380-2394, https://doi.org/10.1093/brain/aww161.

    Article  PubMed  Google Scholar 

  15. Xu, Y. F., Gendron, T. F., Zhang, Y. J., Lin, W. L., D’Alton, S., Sheng, H., Casey, M. C., Tong, J., Knight, J., Yu, X., Rademakers, R., Boylan, K., Hutton, M., McGowan, E., Dickson, D. W., Lewis, J., and Petrucelli, L. (2010) Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice, J. Neurosci., 30, 10851-10859, https://doi.org/10.1523/jneurosci.1630-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nussbacher, J. K., Tabet, R., Yeo, G. W., and Lagier-Tourenne, C. (2019) Disruption of RNA metabolism in neurological diseases and emerging therapeutic interventions, Neuron, 102, 294-320, https://doi.org/10.1016/j.neuron.2019.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sreedharan, J., Blair, I. P., Tripathi, V. B., Hu, X., Vance, C., Rogelj, B., Ackerley, S., Durnall, J. C., Williams, K. L., Buratti, E., Baralle, F., de Belleroche, J., Mitchell, J. D., Leigh, P. N., Al-Chalabi, A., Miller, C. C., Nicholson, G., and Shaw, C. E. (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis, Science, 319, 1668-1672, https://doi.org/10.1126/science.1154584.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Vance, C., Rogelj, B., Hortobágyi, T., De Vos, K. J., Nishimura, A. L., Sreedharan, J., Hu, X., Smith, B., Ruddy, D., Wright, P., Ganesalingam, J., Williams, K. L., Tripathi, V., Al-Saraj, S., Al-Chalabi, A., Leigh, P. N., Blair, I. P., Nicholson, G., de Belleroche, J., Gallo, J. M., et al. (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6, Science, 323, 1208-1211, https://doi.org/10.1126/science.1165942.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Boeynaems, S., Bogaert, E., Van Damme, P., and Van Den Bosch, L. (2016) Inside out: the role of nucleocytoplasmic transport in ALS and FTLD, Acta Neuropathol., 132, 159-173, https://doi.org/10.1007/s00401-016-1586-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Burk, K., and Pasterkamp, R. J. (2019) Disrupted neuronal trafficking in amyotrophic lateral sclerosis, Acta Neuropathol., 137, 859-877, https://doi.org/10.1007/s00401-019-01964-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ho, W. Y., Agrawal, I., Tyan, S. H., Sanford, E., Chang, W. T., Lim, K., Ong, J., Tan, B. S. Y., Moe, A. A. K., Yu, R., Wong, P., Tucker-Kellogg, G., Koo, E., Chuang, K. H., and Ling, S. C. (2021) Dysfunction in nonsense-mediated decay, protein homeostasis, mitochondrial function, and brain connectivity in ALS-FUS mice with cognitive deficits, Acta Neuropathol. Commun., 9, 9, https://doi.org/10.1186/s40478-020-01111-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramesh, N., and Pandey, U. B. (2017) Autophagy dysregulation in ALS: when protein aggregates get out of hand, Front. Mol. Neurosci., 10, 263, https://doi.org/10.3389/fnmol.2017.00263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, Q., Conlon, E. G., Manley, J. L., and Rio, D. C. (2020) Widespread intron retention impairs protein homeostasis in C9orf72 ALS brains, Genome Res., 30, 1705-1715, https://doi.org/10.1101/gr.265298.120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grünewald, T. G. P., Cidre-Aranaz, F., Surdez, D., Tomazou, E. M., de Álava, E., Kovar, H., Sorensen, P. H., Delattre, O., and Dirksen, U. (2018) Ewing sarcoma, Nat. Rev. Disease Primers, 4, 5, https://doi.org/10.1038/s41572-018-0003-x.

    Article  PubMed  Google Scholar 

  25. Lorenzo-Betancor, O., Ogaki, K., Soto-Ortolaza, A., Labbé, C., Vilariño-Güell, C., Rajput, A., Rajput, A. H., Pastor, P., Ortega, S., Lorenzo, E., Strongosky, A. J., van Gerpen, J. A., Uitti, R. J., Wszolek, Z. K., and Ross, O. A. (2014) Analysis of nuclear export sequence regions of FUS-Related RNA-binding proteins in essential tremor, PLoS One, 9, e111989, https://doi.org/10.1371/journal.pone.0111989.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Ederle, H., Funk, C., Abou-Ajram, C., Hutten, S., Funk, E. B. E., Kehlenbach, R. H., Bailer, S. M., and Dormann, D. (2018) Nuclear egress of TDP-43 and FUS occurs independently of Exportin-1/CRM1, Sci. Rep., 8, 7084, https://doi.org/10.1038/s41598-018-25007-5.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Gitler, A. D., and Shorter, J. (2011) RNA-binding proteins with prion-like domains in ALS and FTLD-U, Prion, 5, 179-187, https://doi.org/10.4161/pri.5.3.17230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Udan, M., and Baloh, R. H. (2011) Implications of the prion-related Q/N domains in TDP-43 and FUS, Prion, 5, 1-5, https://doi.org/10.4161/pri.5.1.14265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Skolnick, J., Gao, M., Zhou, H., and Singh, S. (2021) AlphaFold 2: why it works and its implications for understanding the relationships of protein sequence, structure, and function, J. Chem. Inform. Model., 61, 4827-4831, https://doi.org/10.1021/acs.jcim.1c01114.

    Article  CAS  Google Scholar 

  30. Mészáros, B., Erdos, G., and Dosztányi, Z. (2018) IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding, Nucleic Acids Res., 46, W329-W337, https://doi.org/10.1093/nar/gky384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ishigaki, S., Masuda, A., Fujioka, Y., Iguchi, Y., Katsuno, M., Shibata, A., Urano, F., Sobue, G., and Ohno, K. (2012) Position-dependent FUS-RNA interactions regulate alternative splicing events and transcriptions, Sci. Rep., 2, 529, https://doi.org/10.1038/srep00529.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Lagier-Tourenne, C., Polymenidou, M., Hutt, K. R., Vu, A. Q., Baughn, M., Huelga, S. C., Clutario, K. M., Ling, S. C., Liang, T. Y., Mazur, C., Wancewicz, E., Kim, A. S., Watt, A., Freier, S., Hicks, G. G., Donohue, J. P., Shiue, L., Bennett, C. F., Ravits, J., Cleveland, D. W., et al. (2012) Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs, Nat. Neurosci., 15, 1488-1497, https://doi.org/10.1038/nn.3230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rogelj, B., Easton, L. E., Bogu, G. K., Stanton, L. W., Rot, G., Curk, T., Zupan, B., Sugimoto, Y., Modic, M., Haberman, N., Tollervey, J., Fujii, R., Takumi, T., Shaw, C. E., and Ule, J. (2012) Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain, Sci. Rep., 2, 603, https://doi.org/10.1038/srep00603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hoell, J. I., Larsson, E., Runge, S., Nusbaum, J. D., Duggimpudi, S., Farazi, T. A., Hafner, M., Borkhardt, A., Sander, C., and Tuschl, T. (2011) RNA targets of wild-type and mutant FET family proteins, Nat. Struct. Mol. Biol., 18, 1428-1431, https://doi.org/10.1038/nsmb.2163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakaya, T., Alexiou, P., Maragkakis, M., Chang, A., and Mourelatos, Z. (2013) FUS regulates genes coding for RNA-binding proteins in neurons by binding to their highly conserved introns, RNA, 19, 498-509, https://doi.org/10.1261/rna.037804.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Humphrey, J., Birsa, N., Milioto, C., McLaughlin, M., Ule, A. M., Robaldo, D., Eberle, A. B., Kräuchi, R., Bentham, M., Brown, A. L., Jarvis, S., Bodo, C., Garone, M. G., Devoy, A., Soraru, G., Rosa, A., Bozzoni, I., Fisher, E. M. C., Mühlemann, O., Schiavo, G., et al. (2020) FUS ALS-causative mutations impair FUS autoregulation and splicing factor networks through intron retention, Nucleic Acids Res., 48, 6889-6905, https://doi.org/10.1093/nar/gkaa410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rezvykh, A. P., Ustyugov, A. A., Chaprov, K. D., Teterina, E. V., Nebogatikov, V. O., Spasskaya, D. S., Evgen'ev, M. B., Morozov, A. V., and Funikov, S. Y. (2023) Cytoplasmic aggregation of mutant FUS causes multistep RNA splicing perturbations in the course of motor neuron pathology, Nucleic Acids Res., 51, 5810-5830, https://doi.org/10.1093/nar/gkad319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanjuan-Ruiz, I., Govea-Perez, N., McAlonis-Downes, M., Dieterle, S., Megat, S., Dirrig-Grosch, S., Picchiarelli, G., Piol, D., Zhu, Q., Myers, B., Lee, C. Z., Cleveland, D. W., Lagier-Tourenne, C., Da Cruz, S., and Dupuis, L. (2021) Wild-type FUS corrects ALS-like disease induced by cytoplasmic mutant FUS through autoregulation, Mol. Neurodegen., 16, 61, https://doi.org/10.1186/s13024-021-00477-w.

    Article  CAS  Google Scholar 

  39. Zhou, Y., Liu, S., Liu, G., Oztürk, A., and Hicks, G. G. (2013) ALS-associated FUS mutations result in compromised FUS alternative splicing and autoregulation, PLoS Genet., 9, e1003895, https://doi.org/10.1371/journal.pgen.1003895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun, S., Ling, S. C., Qiu, J., Albuquerque, C. P., Zhou, Y., Tokunaga, S., Li, H., Qiu, H., Bui, A., Yeo, G. W., Huang, E. J., Eggan, K., Zhou, H., Fu, X. D., Lagier-Tourenne, C., and Cleveland, D. W. (2015) ALS-causative mutations in FUS/TLS confer gain and loss of function by altered association with SMN and U1-snRNP, Nat. Commun., 6, 6171, https://doi.org/10.1038/ncomms7171.

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Yu, Y., and Reed, R. (2015) FUS functions in coupling transcription to splicing by mediating an interaction between RNAP II and U1 snRNP, Proc. Natl. Acad. Sci. USA, 112, 8608-8613, https://doi.org/10.1073/pnas.1506282112.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Reber, S., Stettler, J., Filosa, G., Colombo, M., Jutzi, D., Lenzken, S. C., Schweingruber, C., Bruggmann, R., Bachi, A., Barabino, S. M., Mühlemann, O., and Ruepp, M. D. (2016) Minor intron splicing is regulated by FUS and affected by ALS-associated FUS mutants, EMBO J., 35, 1504-1521, https://doi.org/10.15252/embj.201593791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lourenco, G. F., Janitz, M., Huang, Y., and Halliday, G. M. (2015) Long noncoding RNAs in TDP-43 and FUS/TLS-related frontotemporal lobar degeneration (FTLD), Neurobiol. Disease, 82, 445-454, https://doi.org/10.1016/j.nbd.2015.07.011.

    Article  CAS  Google Scholar 

  44. Udagawa, T., Fujioka, Y., Tanaka, M., Honda, D., Yokoi, S., Riku, Y., Ibi, D., Nagai, T., Yamada, K., Watanabe, H., Katsuno, M., Inada, T., Ohno, K., Sokabe, M., Okado, H., Ishigaki, S., and Sobue, G. (2015) FUS regulates AMPA receptor function and FTLD/ALS-associated behaviour via GluA1 mRNA stabilization, Nat. Commun., 6, 7098, https://doi.org/10.1038/ncomms8098.

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Yokoi, S., Udagawa, T., Fujioka, Y., Honda, D., Okado, H., Watanabe, H., Katsuno, M., Ishigaki, S., and Sobue, G. (2017) 3'UTR length-dependent control of SynGAP Isoform α2 mRNA by FUS and ELAV-like proteins promotes dendritic spine maturation and cognitive function, Cell Rep., 20, 3071-3084, https://doi.org/10.1016/j.celrep.2017.08.100.

    Article  CAS  PubMed  Google Scholar 

  46. Masuda, A., Takeda, J., Okuno, T., Okamoto, T., Ohkawara, B., Ito, M., Ishigaki, S., Sobue, G., and Ohno, K. (2015) Position-specific binding of FUS to nascent RNA regulates mRNA length, Genes Dev., 29, 1045-1057, https://doi.org/10.1101/gad.255737.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Morlando, M., Dini Modigliani, S., Torrelli, G., Rosa, A., Di Carlo, V., Caffarelli, E., and Bozzoni, I. (2012) FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment, EMBO J., 31, 4502-4510, https://doi.org/10.1038/emboj.2012.319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, W. Y., Pan, L., Su, S. C., Quinn, E. J., Sasaki, M., Jimenez, J. C., Mackenzie, I. R., Huang, E. J., and Tsai, L. H. (2013) Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons, Nat. Neurosci., 16, 1383-1391, https://doi.org/10.1038/nn.3514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Qiu, H., Lee, S., Shang, Y., Wang, W. Y., Au, K. F., Kamiya, S., Barmada, S. J., Finkbeiner, S., Lui, H., Carlton, C. E., Tang, A. A., Oldham, M. C., Wang, H., Shorter, J., Filiano, A. J., Roberson, E. D., Tourtellotte, W. G., Chen, B., Tsai, L. H., and Huang, E. J. (2014) ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects, J. Clin. Invest., 124, 981-999, https://doi.org/10.1172/jci72723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zinszner, H., Sok, J., Immanuel, D., Yin, Y., and Ron, D. (1997) TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling, J. Cell Sci., 110, 1741-1750, https://doi.org/10.1242/jcs.110.15.1741.

    Article  CAS  PubMed  Google Scholar 

  51. Baade, I., Hutten, S., Sternburg, E. L., Pörschke, M., Hofweber, M., Dormann, D., and Kehlenbach, R. H. (2021) The RNA-binding protein FUS is chaperoned and imported into the nucleus by a network of import receptors, J. Biol. Chem., 296, 100659, https://doi.org/10.1016/j.jbc.2021.100659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. So, E., Mitchell, J. C., Memmi, C., Chennell, G., Vizcay-Barrena, G., Allison, L., Shaw, C. E., and Vance, C. (2018) Mitochondrial abnormalities and disruption of the neuromuscular junction precede the clinical phenotype and motor neuron loss in hFUSWT transgenic mice, Human Mol. Genet., 27, 463-474, https://doi.org/10.1093/hmg/ddx415.

    Article  CAS  Google Scholar 

  53. Aoki, N., Higashi, S., Kawakami, I., Kobayashi, Z., Hosokawa, M., Katsuse, O., Togo, T., Hirayasu, Y., and Akiyama, H. (2012) Localization of fused in sarcoma (FUS) protein to the post-synaptic density in the brain, Acta Neuropathol., 124, 383-394, https://doi.org/10.1007/s00401-012-0984-6.

    Article  CAS  PubMed  Google Scholar 

  54. Schoen, M., Reichel, J. M., Demestre, M., Putz, S., Deshpande, D., Proepper, C., Liebau, S., Schmeisser, M. J., Ludolph, A. C., Michaelis, J., and Boeckers, T. M. (2015) Super-resolution microscopy reveals presynaptic localization of the ALS/FTD related protein FUS in hippocampal neurons, Front. Cell. Neurosci., 9, 496, https://doi.org/10.3389/fncel.2015.00496.

    Article  CAS  PubMed  Google Scholar 

  55. Han, T. W., Kato, M., Xie, S., Wu, L. C., Mirzaei, H., Pei, J., Chen, M., Xie, Y., Allen, J., Xiao, G., and McKnight, S. L. (2012) Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies, Cell, 149, 768-779, https://doi.org/10.1016/j.cell.2012.04.016.

    Article  CAS  PubMed  Google Scholar 

  56. Kedersha, N., Stoecklin, G., Ayodele, M., Yacono, P., Lykke-Andersen, J., Fritzler, M. J., Scheuner, D., Kaufman, R. J., Golan, D. E., and Anderson, P. (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling, J. Cell Biol., 169, 871-884, https://doi.org/10.1083/jcb.200502088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wippich, F., Bodenmiller, B., Trajkovska, M. G., Wanka, S., Aebersold, R., and Pelkmans, L. (2013) Dual specificity kinase DYRK3 couples stress granule condensation/dissolution to mTORC1 signaling, Cell, 152, 791-805, https://doi.org/10.1016/j.cell.2013.01.033.

    Article  CAS  PubMed  Google Scholar 

  58. Patel, A., Lee, H. O., Jawerth, L., Maharana, S., Jahnel, M., Hein, M. Y., Stoynov, S., Mahamid, J., Saha, S., Franzmann, T. M., Pozniakovski, A., Poser, I., Maghelli, N., Royer, L. A., Weigert, M., Myers, E. W., Grill, S., Drechsel, D., Hyman, A. A., and Alberti, S. (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation, Cell, 162, 1066-1077, https://doi.org/10.1016/j.cell.2015.07.047.

    Article  CAS  PubMed  Google Scholar 

  59. Kato, M., Han, T. W., Xie, S., Shi, K., Du, X., Wu, L. C., Mirzaei, H., Goldsmith, E. J., Longgood, J., Pei, J., Grishin, N. V., Frantz, D. E., Schneider, J. W., Chen, S., Li, L., Sawaya, M. R., Eisenberg, D., Tycko, R., and McKnight, S. L. (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels, Cell, 149, 753-767, https://doi.org/10.1016/j.cell.2012.04.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Maltseva, D., Chatterjee, S., Yu, C. C., Brzezinski, M., Nagata, Y., Gonella, G., Murthy, A. C., Stachowiak, J. C., Fawzi, N. L., Parekh, S. H., and Bonn, M. (2023) Fibril formation and ordering of disordered FUS LC driven by hydrophobic interactions, Nat. Chem., 15, 1146-1154, https://doi.org/10.1038/s41557-023-01221-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kwiatkowski, T. J., Jr., Bosco, D. A., Leclerc, A. L., Tamrazian, E., Vanderburg, C. R., Russ, C., Davis, A., Gilchrist, J., Kasarskis, E. J., Munsat, T., Valdmanis, P., Rouleau, G. A., Hosler, B. A., Cortelli, P., de Jong, P. J., Yoshinaga, Y., Haines, J. L., Pericak-Vance, M. A., Yan, J., Ticozzi, N., et al. (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis, Science, 323, 1205-1208, https://doi.org/10.1126/science.1166066.

    Article  CAS  PubMed  ADS  Google Scholar 

  62. Farhan, S. M. K., Howrigan, D. P., Abbott, L. E., Klim, J. R., Topp, S. D., Byrnes, A. E., Churchhouse, C., Phatnani, H., Smith, B. N., Rampersaud, E., Wu, G., Wuu, J., Shatunov, A., Iacoangeli, A., Al Khleifat, A., Mordes, D. A., Ghosh, S., Eggan, K., Rademakers, R., McCauley, J. L., et al. (2019) Exome sequencing in amyotrophic lateral sclerosis implicates a novel gene, DNAJC7, encoding a heat-shock protein, Nat. Neurosci., 22, 1966-1974, https://doi.org/10.1038/s41593-019-0530-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Conte, A., Lattante, S., Zollino, M., Marangi, G., Luigetti, M., Del Grande, A., Servidei, S., Trombetta, F., and Sabatelli, M. (2012) P525L FUS mutation is consistently associated with a severe form of juvenile amyotrophic lateral sclerosis, Neuromusc. Disord., 22, 73-75, https://doi.org/10.1016/j.nmd.2011.08.003.

    Article  PubMed  Google Scholar 

  64. Corrado, L., Del Bo, R., Castellotti, B., Ratti, A., Cereda, C., Penco, S., Sorarù, G., Carlomagno, Y., Ghezzi, S., Pensato, V., Colombrita, C., Gagliardi, S., Cozzi, L., Orsetti, V., Mancuso, M., Siciliano, G., Mazzini, L., Comi, G. P., Gellera, C., Ceroni, M., et al. (2010) Mutations of FUS gene in sporadic amyotrophic lateral sclerosis, J. Med. Genet., 47, 190-194, https://doi.org/10.1136/jmg.2009.071027.

    Article  CAS  PubMed  Google Scholar 

  65. DeJesus-Hernandez, M., Kocerha, J., Finch, N., Crook, R., Baker, M., Desaro, P., Johnston, A., Rutherford, N., Wojtas, A., Kennelly, K., Wszolek, Z. K., Graff-Radford, N., Boylan, K., and Rademakers, R. (2010) De novo truncating FUS gene mutation as a cause of sporadic amyotrophic lateral sclerosis, Hum. Mutat., 31, E1377-E1389, https://doi.org/10.1002/humu.21241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Waibel, S., Neumann, M., Rabe, M., Meyer, T., and Ludolph, A. C. (2010) Novel missense and truncating mutations in FUS/TLS in familial ALS, Neurology, 75, 815-817, https://doi.org/10.1212/WNL.0b013e3181f07e26.

    Article  CAS  PubMed  Google Scholar 

  67. Notaro, A., Messina, A., and La Bella, V. (2021) A deletion of the nuclear localization signal domain in the Fus protein induces stable post-stress cytoplasmic inclusions in SH-SY5Y cells, Front. Neurosci., 15, 759659, https://doi.org/10.3389/fnins.2021.759659.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhang, Z. C., and Chook, Y. M. (2012) Structural and energetic basis of ALS-causing mutations in the atypical proline-tyrosine nuclear localization signal of the Fused in Sarcoma protein (FUS), Proc. Natl. Acad. Sci. USA, 109, 12017-12021, https://doi.org/10.1073/pnas.1207247109.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  69. Dormann, D., Rodde, R., Edbauer, D., Bentmann, E., Fischer, I., Hruscha, A., Than, M. E., Mackenzie, I. R., Capell, A., Schmid, B., Neumann, M., and Haass, C. (2010) ALS-associated fused in sarcoma (FUS) mutations disrupt transportin-mediated nuclear import, EMBO J., 29, 2841-2857, https://doi.org/10.1038/emboj.2010.143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Olszewska, D. A., Lonergan, R., Fallon, E. M., and Lynch, T. (2016) Genetics of frontotemporal dementia, Curr. Neurol. Neurosci. Rep., 16, 107, https://doi.org/10.1007/s11910-016-0707-9.

    Article  CAS  PubMed  Google Scholar 

  71. Deng, H. X., Zhai, H., Bigio, E. H., Yan, J., Fecto, F., Ajroud, K., Mishra, M., Ajroud-Driss, S., Heller, S., Sufit, R., Siddique, N., Mugnaini, E., and Siddique, T. (2010) FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis, Ann. Neurol., 67, 739-748, https://doi.org/10.1002/ana.22051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ikenaka, K., Ishigaki, S., Iguchi, Y., Kawai, K., Fujioka, Y., Yokoi, S., Abdelhamid, R. F., Nagano, S., Mochizuki, H., Katsuno, M., and Sobue, G. (2020) Characteristic features of FUS inclusions in spinal motor neurons of sporadic amyotrophic lateral sclerosis, J. Neuropathol. Exp. Neurol., 79, 370-377, https://doi.org/10.1093/jnen/nlaa003.

    Article  CAS  PubMed  Google Scholar 

  73. Fallini, C., Khalil, B., Smith, C. L., and Rossoll, W. (2020) Traffic jam at the nuclear pore: all roads lead to nucleocytoplasmic transport defects in ALS/FTD, Neurobiol. Disease, 140, 104835, https://doi.org/10.1016/j.nbd.2020.104835.

    Article  CAS  Google Scholar 

  74. Kim, W., Kim, D. Y., and Lee, K. H. (2021) RNA-binding proteins and the complex pathophysiology of ALS, Int. J. Mol. Sci., 22, 2598, https://doi.org/10.3390/ijms22052598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Scekic-Zahirovic, J., Sendscheid, O., El Oussini, H., Jambeau, M., Sun, Y., Mersmann, S., Wagner, M., Dieterlé, S., Sinniger, J., Dirrig-Grosch, S., Drenner, K., Birling, M. C., Qiu, J., Zhou, Y., Li, H., Fu, X. D., Rouaux, C., Shelkovnikova, T., Witting, A., Ludolph, A. C., et al. (2016) Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss, EMBO J., 35, 1077-1097, https://doi.org/10.15252/embj.201592559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tyzack, G. E., Luisier, R., Taha, D. M., Neeves, J., Modic, M., Mitchell, J. S., Meyer, I., Greensmith, L., Newcombe, J., Ule, J., Luscombe, N. M., and Patani, R. (2019) Widespread FUS mislocalization is a molecular hallmark of amyotrophic lateral sclerosis, Brain, 142, 2572-2580, https://doi.org/10.1093/brain/awz217.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Luisier, R., Tyzack, G. E., Hall, C. E., Mitchell, J. S., Devine, H., Taha, D. M., Malik, B., Meyer, I., Greensmith, L., Newcombe, J., Ule, J., Luscombe, N. M., and Patani, R. (2018) Intron retention and nuclear loss of SFPQ are molecular hallmarks of ALS, Nat. Commun., 9, 2010, https://doi.org/10.1038/s41467-018-04373-8.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  78. Arnold, E. S., Ling, S. C., Huelga, S. C., Lagier-Tourenne, C., Polymenidou, M., Ditsworth, D., Kordasiewicz, H. B., McAlonis-Downes, M., Platoshyn, O., Parone, P. A., Da Cruz, S., Clutario, K. M., Swing, D., Tessarollo, L., Marsala, M., Shaw, C. E., Yeo, G. W., and Cleveland, D. W. (2013) ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43, Proc. Natl. Acad. Sci. USA, 110, E736-E745, https://doi.org/10.1073/pnas.1222809110.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Brown, A. L., Wilkins, O. G., Keuss, M. J., Hill, S. E., Zanovello, M., Lee, W. C., Bampton, A., Lee, F. C. Y., Masino, L., Qi, Y. A., Bryce-Smith, S., Gatt, A., Hallegger, M., Fagegaltier, D., Phatnani, H., Newcombe, J., Gustavsson, E. K., Seddighi, S., Reyes, J. F., Coon, S. L., et al. (2022) TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A, Nature, 603, 131-137, https://doi.org/10.1038/s41586-022-04436-3.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  80. Kiskinis, E., Sandoe, J., Williams, L. A., Boulting, G. L., Moccia, R., Wainger, B. J., Han, S., Peng, T., Thams, S., Mikkilineni, S., Mellin, C., Merkle, F. T., Davis-Dusenbery, B. N., Ziller, M., Oakley, D., Ichida, J., Di Costanzo, S., Atwater, N., Maeder, M. L., Goodwin, M. J., et al. (2014) Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1, Cell Stem Cell, 14, 781-795, https://doi.org/10.1016/j.stem.2014.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Krach, F., Batra, R., Wheeler, E. C., Vu, A. Q., Wang, R., Hutt, K., Rabin, S. J., Baughn, M. W., Libby, R. T., Diaz-Garcia, S., Stauffer, J., Pirie, E., Saberi, S., Rodriguez, M., Madrigal, A. A., Kohl, Z., Winner, B., Yeo, G. W., and Ravits, J. (2018) Transcriptome-pathology correlation identifies interplay between TDP-43 and the expression of its kinase CK1E in sporadic ALS, Acta Neuropathol., 136, 405-423, https://doi.org/10.1007/s00401-018-1870-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Prudencio, M., Belzil, V. V., Batra, R., Ross, C. A., Gendron, T. F., Pregent, L. J., Murray, M. E., Overstreet, K. K., Piazza-Johnston, A. E., Desaro, P., Bieniek, K. F., DeTure, M., Lee, W. C., Biendarra, S. M., Davis, M. D., Baker, M. C., Perkerson, R. B., van Blitterswijk, M., Stetler, C. T., Rademakers, R., et al. (2015) Distinct brain transcriptome profiles in C9orf72-associated and sporadic ALS, Nat. Neurosci., 18, 1175-1182, https://doi.org/10.1038/nn.4065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Prudencio, M., Gonzales, P. K., Cook, C. N., Gendron, T. F., Daughrity, L. M., Song, Y., Ebbert, M. T. W., van Blitterswijk, M., Zhang, Y. J., Jansen-West, K., Baker, M. C., DeTure, M., Rademakers, R., Boylan, K. B., Dickson, D. W., Petrucelli, L., and Link, C. D. (2017) Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients, Hum. Mol. Genet., 26, 3421-3431, https://doi.org/10.1093/hmg/ddx233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kamelgarn, M., Chen, J., Kuang, L., Jin, H., Kasarskis, E. J., and Zhu, H. (2018) ALS mutations of FUS suppress protein translation and disrupt the regulation of nonsense-mediated decay, Proc. Natl. Acad. Sci. USA, 115, E11904-E11913, https://doi.org/10.1073/pnas.1810413115.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  85. Sévigny, M., Bourdeau Julien, I., Venkatasubramani, J. P., Hui, J. B., Dutchak, P. A., and Sephton, C. F. (2020) FUS contributes to mTOR-dependent inhibition of translation, J. Biol. Chem., 295, 18459-18473, https://doi.org/10.1074/jbc.RA120.013801.

    Article  PubMed  Google Scholar 

  86. Blokhuis, A. M., Koppers, M., Groen, E. J. N., van den Heuvel, D. M. A., Dini Modigliani, S., Anink, J. J., Fumoto, K., van Diggelen, F., Snelting, A., Sodaar, P., Verheijen, B. M., Demmers, J. A. A., Veldink, J. H., Aronica, E., Bozzoni, I., den Hertog, J., van den Berg, L. H., and Pasterkamp, R. J. (2016) Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways, Acta Neuropathol., 132, 175-196, https://doi.org/10.1007/s00401-016-1575-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kamelgarn, M., Chen, J., Kuang, L., Arenas, A., Zhai, J., Zhu, H., and Gal, J. (2016) Proteomic analysis of FUS interacting proteins provides insights into FUS function and its role in ALS, Biochim. Biophys. Acta, 1862, 2004-2014, https://doi.org/10.1016/j.bbadis.2016.07.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. An, H., Litscher, G., Watanabe, N., Wei, W., Hashimoto, T., Iwatsubo, T., Buchman, V. L., and Shelkovnikova, T. A. (2022) ALS-linked cytoplasmic FUS assemblies are compositionally different from physiological stress granules and sequester hnRNPA3, a novel modifier of FUS toxicity, Neurobiol. Disease, 162, 105585, https://doi.org/10.1016/j.nbd.2021.105585.

    Article  CAS  Google Scholar 

  89. Anderson, P., and Kedersha, N. (2008) Stress granules: the Tao of RNA triage, Trends Biochem. Sci., 33, 141-150, https://doi.org/10.1016/j.tibs.2007.12.003.

    Article  CAS  PubMed  Google Scholar 

  90. Kedersha, N., Ivanov, P., and Anderson, P. (2013) Stress granules and cell signaling: more than just a passing phase? Trends Biochem. Sci., 38, 494-506, https://doi.org/10.1016/j.tibs.2013.07.004.

    Article  CAS  PubMed  Google Scholar 

  91. An, H., Tan, J. T., and Shelkovnikova, T. A. (2019) Stress granules regulate stress-induced paraspeckle assembly, J. Cell Biol., 218, 4127-4140, https://doi.org/10.1083/jcb.201904098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bosco, D. A., Lemay, N., Ko, H. K., Zhou, H., Burke, C., Kwiatkowski, T. J., Jr., Sapp, P., McKenna-Yasek, D., Brown, R. H., Jr., and Hayward, L. J. (2010) Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules, Hum. Mol. Genet., 19, 4160-4175, https://doi.org/10.1093/hmg/ddq335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gal, J., Zhang, J., Kwinter, D. M., Zhai, J., Jia, H., Jia, J., and Zhu, H. (2011) Nuclear localization sequence of FUS and induction of stress granules by ALS mutants, Neurobiol. Aging, 32, 2323.e2327-2340, https://doi.org/10.1016/j.neurobiolaging.2010.06.010.

    Article  CAS  Google Scholar 

  94. Li, Y. R., King, O. D., Shorter, J., and Gitler, A. D. (2013) Stress granules as crucibles of ALS pathogenesis, J. Cell Biol., 201, 361-372, https://doi.org/10.1083/jcb.201302044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shelkovnikova, T. A., Robinson, H. K., Connor-Robson, N., and Buchman, V. L. (2013) Recruitment into stress granules prevents irreversible aggregation of FUS protein mislocalized to the cytoplasm, Cell Cycle, 12, 3194-3202, https://doi.org/10.4161/cc.26241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shelkovnikova, T. A., Robinson, H. K., Southcombe, J. A., Ninkina, N., and Buchman, V. L. (2014) Multistep process of FUS aggregation in the cell cytoplasm involves RNA-dependent and RNA-independent mechanisms, Hum. Mol. Genet., 23, 5211-5226, https://doi.org/10.1093/hmg/ddu243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Aulas, A., and Vande Velde, C. (2015) Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS? Front. Cell. Neurosci., 9, 423, https://doi.org/10.3389/fncel.2015.00423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Baron, D. M., Kaushansky, L. J., Ward, C. L., Sama, R. R., Chian, R. J., Boggio, K. J., Quaresma, A. J., Nickerson, J. A., and Bosco, D. A. (2013) Amyotrophic lateral sclerosis-linked FUS/TLS alters stress granule assembly and dynamics, Mol. Neurodegener., 8, 30, https://doi.org/10.1186/1750-1326-8-30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Japtok, J., Lojewski, X., Naumann, M., Klingenstein, M., Reinhardt, P., Sterneckert, J., Putz, S., Demestre, M., Boeckers, T. M., Ludolph, A. C., Liebau, S., Storch, A., and Hermann, A. (2015) Stepwise acquirement of hallmark neuropathology in FUS-ALS iPSC models depends on mutation type and neuronal aging, Neurobiol. Disease, 82, 420-429, https://doi.org/10.1016/j.nbd.2015.07.017.

    Article  CAS  Google Scholar 

  100. Takanashi, K., and Yamaguchi, A. (2014) Aggregation of ALS-linked FUS mutant sequesters RNA binding proteins and impairs RNA granules formation, Biochem. Biophys. Res. Commun., 52, 600-607, https://doi.org/10.1016/j.bbrc.2014.08.115.

    Article  CAS  Google Scholar 

  101. Shelkovnikova, T. A., An, H., Skelt, L., Tregoning, J. S., Humphreys, I. R., and Buchman, V. L. (2019) Antiviral immune response as a trigger of FUS proteinopathy in amyotrophic lateral sclerosis, Cell Rep., 29, 4496-4508.e4494, https://doi.org/10.1016/j.celrep.2019.11.094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bonifacino, T., Zerbo, R. A., Balbi, M., Torazza, C., Frumento, G., Fedele, E., Bonanno, G., and Milanese, M. (2021) Nearly 30 years of animal models to study amyotrophic lateral sclerosis: a historical overview and future perspectives, Int. J. Mol. Sci., 22, 12236, https://doi.org/10.3390/ijms222212236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shelkovnikova, T. A., Peters, O. M., Deykin, A. V., Connor-Robson, N., Robinson, H., Ustyugov, A. A., Bachurin, S. O., Ermolkevich, T. G., Goldman, I. L., Sadchikova, E. R., Kovrazhkina, E. A., Skvortsova, V. I., Ling, S. C., Da Cruz, S., Parone, P. A., Buchman, V. L., and Ninkina, N. N. (2013) Fused in sarcoma (FUS) protein lacking nuclear localization signal (NLS) and major RNA binding motifs triggers proteinopathy and severe motor phenotype in transgenic mice, J. Biol. Chem., 288, 25266-25274, https://doi.org/10.1074/jbc.M113.492017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Capauto, D., Colantoni, A., Lu, L., Santini, T., Peruzzi, G., Biscarini, S., Morlando, M., Shneider, N. A., Caffarelli, E., Laneve, P., and Bozzoni, I. (2018) A regulatory circuitry between Gria2, miR-409, and miR-495 is affected by ALS FUS mutation in ESC-derived motor neurons, Mol. Neurobiol., 55, 7635-7651, https://doi.org/10.1007/s12035-018-0884-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Devoy, A., Kalmar, B., Stewart, M., Park, H., Burke, B., Noy, S. J., Redhead, Y., Humphrey, J., Lo, K., Jaeger, J., Mejia Maza, A., Sivakumar, P., Bertolin, C., Soraru, G., Plagnol, V., Greensmith, L., Acevedo Arozena, A., Isaacs, A. M., Davies, B., Fratta, P., et al. (2017) Humanized mutant FUS drives progressive motor neuron degeneration without aggregation in 'FUSDelta14' knockin mice, Brain, 140, 2797-2805, https://doi.org/10.1093/brain/awx248.

    Article  PubMed  PubMed Central  Google Scholar 

  106. López-Erauskin, J., Tadokoro, T., Baughn, M. W., Myers, B., McAlonis-Downes, M., Chillon-Marinas, C., Asiaban, J. N., Artates, J., Bui, A. T., Vetto, A. P., Lee, S. K., Le, A. V., Sun, Y., Jambeau, M., Boubaker, J., Swing, D., Qiu, J., Hicks, G. G., Ouyang, Z., Fu, X. D., et al. (2018) ALS/FTD-linked mutation in FUS suppresses intra-axonal protein synthesis and drives disease without nuclear loss-of-function of FUS, Neuron, 100, 816-830.e817, https://doi.org/10.1016/j.neuron.2018.09.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Verbeeck, C., Deng, Q., Dejesus-Hernandez, M., Taylor, G., Ceballos-Diaz, C., Kocerha, J., Golde, T., Das, P., Rademakers, R., Dickson, D. W., and Kukar, T. (2012) Expression of Fused in sarcoma mutations in mice recapitulates the neuropathology of FUS proteinopathies and provides insight into disease pathogenesis, Mol. Neurodegener., 7, 53, https://doi.org/10.1186/1750-1326-7-53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yu, X., Zhao, Z., Shen, H., Bing, Q., Li, N., and Hu, J. (2018) Clinical and genetic features of patients with juvenile amyotrophic lateral sclerosis with fused in sarcoma (FUS) mutation, Med. Sci. Monit., 24, 8750-8757, https://doi.org/10.12659/msm.913724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zou, Z. Y., Cui, L. Y., Sun, Q., Li, X. G., Liu, M. S., Xu, Y., Zhou, Y., and Yang, X. Z. (2013) De novo FUS gene mutations are associated with juvenile-onset sporadic amyotrophic lateral sclerosis in China, Neurobiol. Aging, 34, 1312.e1311-1318, https://doi.org/10.1016/j.neurobiolaging.2012.09.005.

    Article  CAS  Google Scholar 

  110. Bäumer, D., Hilton, D., Paine, S. M., Turner, M. R., Lowe, J., Talbot, K., and Ansorge, O. (2010) Juvenile ALS with basophilic inclusions is a FUS proteinopathy with FUS mutations, Neurology, 75, 611-618, https://doi.org/10.1212/WNL.0b013e3181ed9cde.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Matsumoto, T., Matsukawa, K., Watanabe, N., Kishino, Y., Kunugi, H., Ihara, R., Wakabayashi, T., Hashimoto, T., and Iwatsubo, T. (2018) Self-assembly of FUS through its low-complexity domain contributes to neurodegeneration, Hum. Mol. Genet., 27, 1353-1365, https://doi.org/10.1093/hmg/ddy046.

    Article  CAS  PubMed  Google Scholar 

  112. Gonzalez, A., Mannen, T., Çağatay, T., Fujiwara, A., Matsumura, H., Niesman, A. B., Brautigam, C. A., Chook, Y. M., and Yoshizawa, T. (2021) Mechanism of karyopherin-β2 binding and nuclear import of ALS variants FUS(P525L) and FUS(R495X), Sci. Rep., 11, 3754, https://doi.org/10.1038/s41598-021-83196-y.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  113. Nakaya, T., and Maragkakis, M. (2018) Amyotrophic lateral sclerosis associated FUS mutation shortens mitochondria and induces neurotoxicity, Sci. Rep., 8, 15575, https://doi.org/10.1038/s41598-018-33964-0.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  114. Tibshirani, M., Tradewell, M. L., Mattina, K. R., Minotti, S., Yang, W., Zhou, H., Strong, M. J., Hayward, L. J., and Durham, H. D. (2015) Cytoplasmic sequestration of FUS/TLS associated with ALS alters histone marks through loss of nuclear protein arginine methyltransferase 1, Hum. Mol. Genet., 24, 773-786, https://doi.org/10.1093/hmg/ddu494.

    Article  CAS  PubMed  Google Scholar 

  115. Joyce, N. C., and Carter, G. T. (2013) Electrodiagnosis in persons with amyotrophic lateral sclerosis, J. Injury Funct. Rehab., 5, S89-S95, https://doi.org/10.1016/j.pmrj.2013.03.020.

    Article  Google Scholar 

  116. Eura, N., Sugie, K., Suzuki, N., Kiriyama, T., Izumi, T., Shimakura, N., Kato, M., and Aoki, M. (2019) A juvenile sporadic amyotrophic lateral sclerosis case with P525L mutation in the FUS gene: A rare co-occurrence of autism spectrum disorder and tremor, J. Neurol. Sci., 398, 67-68, https://doi.org/10.1016/j.jns.2019.01.032.

    Article  CAS  PubMed  Google Scholar 

  117. King, A., Troakes, C., Smith, B., Nolan, M., Curran, O., Vance, C., Shaw, C. E., and Al-Sarraj, S. (2015) ALS-FUS pathology revisited: singleton FUS mutations and an unusual case with both a FUS and TARDBP mutation, Acta Neuropathol. Commun., 3, 62, https://doi.org/10.1186/s40478-015-0235-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sharma, A., Lyashchenko, A. K., Lu, L., Nasrabady, S. E., Elmaleh, M., Mendelsohn, M., Nemes, A., Tapia, J. C., Mentis, G. Z., and Shneider, N. A. (2016) ALS-associated mutant FUS induces selective motor neuron degeneration through toxic gain of function, Nat. Commun., 7, 10465, https://doi.org/10.1038/ncomms10465.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  119. Kerk, S. Y., Bai, Y., Smith, J., Lalgudi, P., Hunt, C., Kuno, J., Nuara, J., Yang, T., Lanza, K., Chan, N., Coppola, A., Tang, Q., Espert, J., Jones, H., Fannell, C., Zambrowicz, B., and Chiao, E. (2022) Homozygous ALS-linked FUS P525L mutations cell- autonomously perturb transcriptome profile and chemoreceptor signaling in human iPSC microglia, Stem Cell Rep., 17, 678-692, https://doi.org/10.1016/j.stemcr.2022.01.004.

    Article  CAS  Google Scholar 

  120. Funikov, S. Y., Rezvykh, A. P., Mazin, P. V., Morozov, A. V., Maltsev, A. V., Chicheva, M. M., Vikhareva, E. A., Evgen'ev, M. B., and Ustyugov, A. A. (2018) FUS(1-359) transgenic mice as a model of ALS: pathophysiological and molecular aspects of the proteinopathy, Neurogenetics, 19, 189-204, https://doi.org/10.1007/s10048-018-0553-9.

    Article  CAS  PubMed  Google Scholar 

  121. Scekic-Zahirovic, J., Oussini, H. E., Mersmann, S., Drenner, K., Wagner, M., Sun, Y., Allmeroth, K., Dieterlé, S., Sinniger, J., Dirrig-Grosch, S., René, F., Dormann, D., Haass, C., Ludolph, A. C., Lagier-Tourenne, C., Storkebaum, E., and Dupuis, L. (2017) Motor neuron intrinsic and extrinsic mechanisms contribute to the pathogenesis of FUS-associated amyotrophic lateral sclerosis, Acta Neuropathol., 133, 887-906, https://doi.org/10.1007/s00401-017-1687-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang, X., Wang, F., Hu, Y., Chen, R., Meng, D., Guo, L., Lv, H., Guan, J., and Jia, Y. (2020) In vivo stress granule misprocessing evidenced in a FUS knock-in ALS mouse model, Brain, 143, 1350-1367, https://doi.org/10.1093/brain/awaa076.

    Article  PubMed  Google Scholar 

  123. White, M. A., Kim, E., Duffy, A., Adalbert, R., Phillips, B. U., Peters, O. M., Stephenson, J., Yang, S., Massenzio, F., Lin, Z., Andrews, S., Segonds-Pichon, A., Metterville, J., Saksida, L. M., Mead, R., Ribchester, R. R., Barhomi, Y., Serre, T., Coleman, M. P., Fallon, J. R., et al. (2018) TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD, Nat. Neurosci., 21, 552-563, https://doi.org/10.1038/s41593-018-0113-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ittner, L. M., Fath, T., Ke, Y. D., Bi, M., van Eersel, J., Li, K. M., Gunning, P., and Götz, J. (2008) Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia, Proc. Natl. Acad. Sci. USA, 105, 15997-16002, https://doi.org/10.1073/pnas.0808084105.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  125. Vernay, A., Therreau, L., Blot, B., Risson, V., Dirrig-Grosch, S., Waegaert, R., Lequeu, T., Sellal, F., Schaeffer, L., Sadoul, R., Loeffler, J. P., and René, F. (2016) A transgenic mouse expressing CHMP2Bintron5 mutant in neurons develops histological and behavioural features of amyotrophic lateral sclerosis and frontotemporal dementia, Hum. Mol. Genet., 25, 3341-3360, https://doi.org/10.1093/hmg/ddw182.

    Article  CAS  PubMed  Google Scholar 

  126. Huang, C., Tong, J., Bi, F., Wu, Q., Huang, B., Zhou, H., and Xia, X. G. (2012) Entorhinal cortical neurons are the primary targets of FUS mislocalization and ubiquitin aggregation in FUS transgenic rats, Hum. Mol. Genet., 21, 4602-4614, https://doi.org/10.1093/hmg/dds299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Huang, C., Zhou, H., Tong, J., Chen, H., Liu, Y. J., Wang, D., Wei, X., and Xia, X. G. (2011) FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, PLoS Genetics, 7, e1002011, https://doi.org/10.1371/journal.pgen.1002011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Acosta, J. R., Goldsbury, C., Winnick, C., Badrock, A. P., Fraser, S. T., Laird, A. S., Hall, T. E., Don, E. K., Fifita, J. A., Blair, I. P., Nicholson, G. A., and Cole, N. J. (2014) Mutant human FUS Is ubiquitously mislocalized and generates persistent stress granules in primary cultured transgenic zebrafish cells, PLoS One, 9, e90572, https://doi.org/10.1371/journal.pone.0090572.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  129. Armstrong, G. A., and Drapeau, P. (2013) Loss and gain of FUS function impair neuromuscular synaptic transmission in a genetic model of ALS, Hum. Mol. Genet., 22, 4282-4292, https://doi.org/10.1093/hmg/ddt278.

    Article  CAS  PubMed  Google Scholar 

  130. Bourefis, A. R., Campanari, M. L., Buee-Scherrer, V., and Kabashi, E. (2020) Functional characterization of a FUS mutant zebrafish line as a novel genetic model for ALS, Neurobiol. Disease, 142, 104935, https://doi.org/10.1016/j.nbd.2020.104935.

    Article  CAS  Google Scholar 

  131. Brand, A. H., and Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes, Development, 118, 401-415, https://doi.org/10.1242/dev.118.2.401.

    Article  CAS  PubMed  Google Scholar 

  132. Liguori, F., Amadio, S., and Volonté, C. (2021) Fly for ALS: Drosophila modeling on the route to amyotrophic lateral sclerosis modifiers, Cell. Mol. Life Sci., 78, 6143-6160, https://doi.org/10.1007/s00018-021-03905-8.

    Article  CAS  PubMed  Google Scholar 

  133. Stolow, D. T., and Haynes, S. R. (1995) Cabeza, a Drosophila gene encoding a novel RNA binding protein, shares homology with EWS and TLS, two genes involved in human sarcoma formation, Nucleic Acids Res., 23, 835-843, https://doi.org/10.1093/nar/23.5.835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Baldwin, K. R., Godena, V. K., Hewitt, V. L., and Whitworth, A. J. (2016) Axonal transport defects are a common phenotype in Drosophila models of ALS, Hum. Mol. Genet., 25, 2378-2392, https://doi.org/10.1093/hmg/ddw105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Frickenhaus, M., Wagner, M., Mallik, M., Catinozzi, M., and Storkebaum, E. (2015) Highly efficient cell-type-specific gene inactivation reveals a key function for the Drosophila FUS homolog cabeza in neurons, Sci. Rep., 5, 9107, https://doi.org/10.1038/srep09107.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Chen, Y., Yang, M., Deng, J., Chen, X., Ye, Y., Zhu, L., Liu, J., Ye, H., Shen, Y., Li, Y., Rao, E. J., Fushimi, K., Zhou, X., Bigio, E. H., Mesulam, M., Xu, Q., and Wu, J. Y. (2011) Expression of human FUS protein in Drosophila leads to progressive neurodegeneration, Protein Cell, 2, 477-486, https://doi.org/10.1007/s13238-011-1065-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Xia, R., Liu, Y., Yang, L., Gal, J., Zhu, H., and Jia, J. (2012) Motor neuron apoptosis and neuromuscular junction perturbation are prominent features in a Drosophila model of Fus-mediated ALS, Mol. Neurodegener., 7, 10, https://doi.org/10.1186/1750-1326-7-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Therrien, M., and Parker, J. A. (2014) Deciphering genetic interactions between ALS genes using C. elegans, Worm, 3, e29047, https://doi.org/10.4161/worm.29047.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Taylor, M., Marx, O., and Norris, A. (2023) TDP-1 and FUST-1 co-inhibit exon inclusion and control fertility together with transcriptional regulation, bioRxiv, https://doi.org/10.1101/2023.04.18.537345.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Vérièpe, J., Fossouo, L., and Parker, J. A. (2015) Neurodegeneration in C. elegans models of ALS requires TIR-1/Sarm1 immune pathway activation in neurons, Nat. Commun., 6, 7319, https://doi.org/10.1038/ncomms8319.

    Article  CAS  PubMed  ADS  Google Scholar 

  141. Zhang, T., Wu, Y. C., Mullane, P., Ji, Y. J., Liu, H., He, L., Arora, A., Hwang, H. Y., Alessi, A. F., Niaki, A. G., Periz, G., Guo, L., Wang, H., Elkayam, E., Joshua-Tor, L., Myong, S., Kim, J. K., Shorter, J., Ong, S. E., Leung, A. K. L., et al. (2018) FUS regulates activity of microRNA-mediated gene silencing, Mol. Cell, 69, 787-801.e788, https://doi.org/10.1016/j.molcel.2018.02.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Murakami, T., Yang, S. P., Xie, L., Kawano, T., Fu, D., Mukai, A., Bohm, C., Chen, F., Robertson, J., Suzuki, H., Tartaglia, G. G., Vendruscolo, M., Kaminski Schierle, G. S., Chan, F. T., Moloney, A., Crowther, D., Kaminski, C. F., Zhen, M., and St George-Hyslop, P. (2012) ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism, Hum. Mol. Genet., 21, 1-9, https://doi.org/10.1093/hmg/ddr417.

    Article  CAS  PubMed  Google Scholar 

  143. Vaccaro, A., Tauffenberger, A., Aggad, D., Rouleau, G., Drapeau, P., and Parker, J. A. (2012) Mutant TDP-43 and FUS cause age-dependent paralysis and neurodegeneration in C. elegans, PLoS One, 7, e31321, https://doi.org/10.1371/journal.pone.0031321.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  144. Markert, S. M., Skoruppa, M., Yu, B., Mulcahy, B., Zhen, M., Gao, S., Sendtner, M., and Stigloher, C. (2020) Overexpression of an ALS-associated FUS mutation in C. elegans disrupts NMJ morphology and leads to defective neuromuscular transmission, Biol. Open, 9, bio055129, https://doi.org/10.1242/bio.055129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Therrien, M., Rouleau, G. A., Dion, P. A., and Parker, J. A. (2016) FET proteins regulate lifespan and neuronal integrity, Sci. Rep., 6, 25159, https://doi.org/10.1038/srep25159.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  146. Baskoylu, S. N., Chapkis, N., Unsal, B., Lins, J., Schuch, K., Simon, J., and Hart, A. C. (2022) Disrupted autophagy and neuronal dysfunction in C. elegans knockin models of FUS amyotrophic lateral sclerosis, Cell Rep., 38, 110195, https://doi.org/10.1016/j.celrep.2021.110195.

    Article  CAS  PubMed  Google Scholar 

  147. Monahan, Z. T., Rhoads, S. N., Yee, D. S., and Shewmaker, F. P. (2018) Yeast models of prion-like proteins that cause amyotrophic lateral sclerosis reveal pathogenic mechanisms, Front. Mol. Neurosci., 11, 453, https://doi.org/10.3389/fnmol.2018.00453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kryndushkin, D., and Shewmaker, F. (2011) Modeling ALS and FTLD proteinopathies in yeast: an efficient approach for studying protein aggregation and toxicity, Prion, 5, 250-257, https://doi.org/10.4161/pri.17229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ju, S., Tardiff, D. F., Han, H., Divya, K., Zhong, Q., Maquat, L. E., Bosco, D. A., Hayward, L. J., Brown, R. H., Jr., Lindquist, S., Ringe, D., and Petsko, G. A. (2011) A yeast model of FUS/TLS-dependent cytotoxicity, PLoS Biol., 9, e1001052, https://doi.org/10.1371/journal.pbio.1001052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sun, Z., Diaz, Z., Fang, X., Hart, M. P., Chesi, A., Shorter, J., and Gitler, A. D. (2011) Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS, PLoS Biol., 9, e1000614, https://doi.org/10.1371/journal.pbio.1000614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Park, S. K., Arslan, F., Kanneganti, V., Barmada, S. J., Purushothaman, P., Verma, S. C., and Liebman, S. W. (2018) Overexpression of a conserved HSP40 chaperone reduces toxicity of several neurodegenerative disease proteins, Prion, 12, 16-22, https://doi.org/10.1080/19336896.2017.1423185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Jaiswal, M. K. (2019) Riluzole and edaravone: a tale of two amyotrophic lateral sclerosis drugs, Med. Res. Rev., 39, 733-748, https://doi.org/10.1002/med.21528.

    Article  PubMed  Google Scholar 

  153. Doble, A. (1996) The pharmacology and mechanism of action of riluzole, Neurology, 47, S233-S241, https://doi.org/10.1212/wnl.47.6_suppl_4.233s.

    Article  CAS  PubMed  Google Scholar 

  154. Hinchcliffe, M., and Smith, A. (2017) Riluzole: real-world evidence supports significant extension of median survival times in patients with amyotrophic lateral sclerosis, Degener. Neurol. Neuromusc. Disease, 7, 61-70, https://doi.org/10.2147/dnnd.s135748.

    Article  CAS  Google Scholar 

  155. Cruz, M. P. (2018) Edaravone (Radicava): a novel neuroprotective agent for the treatment of amyotrophic lateral sclerosis, PT, 43, 25-28.

    Google Scholar 

  156. Cho, H., and Shukla, S. (2020) Role of edaravone as a treatment option for patients with amyotrophic lateral sclerosis, Pharmaceuticals, 14, 29, https://doi.org/10.3390/ph14010029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Okada, M., Yamashita, S., Ueyama, H., Ishizaki, M., Maeda, Y., and Ando, Y. (2018) Long-term effects of edaravone on survival of patients with amyotrophic lateral sclerosis, eNeurologicalSci, 11, 11-14, https://doi.org/10.1016/j.ensci.2018.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Brooks, B. R., Berry, J. D., Ciepielewska, M., Liu, Y., Zambrano, G. S., Zhang, J., and Hagan, M. (2022) Intravenous edaravone treatment in ALS and survival: an exploratory, retrospective, administrative claims analysis, EClinicalMedicine, 52, 101590, https://doi.org/10.1016/j.eclinm.2022.101590.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Petrov, D., Mansfield, C., Moussy, A., and Hermine, O. (2017) ALS clinical trials review: 20 years of failure. Are we any closer to registering a new treatment? Front. Aging Neurosci., 9, 68, https://doi.org/10.3389/fnagi.2017.00068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Berry, J. D., Shefner, J. M., Conwit, R., Schoenfeld, D., Keroack, M., Felsenstein, D., Krivickas, L., David, W. S., Vriesendorp, F., Pestronk, A., Caress, J. B., Katz, J., Simpson, E., Rosenfeld, J., Pascuzzi, R., Glass, J., Rezania, K., Rothstein, J. D., Greenblatt, D. J., and Cudkowicz, M. E. (2013) Design and initial results of a multi-phase randomized trial of ceftriaxone in amyotrophic lateral sclerosis, PLoS One, 8, e61177, https://doi.org/10.1371/journal.pone.0061177.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  161. de Carvalho, M., Pinto, S., Costa, J., Evangelista, T., Ohana, B., and Pinto, A. (2010) A randomized, placebo-controlled trial of memantine for functional disability in amyotrophic lateral sclerosis, Amyotroph. Lateral Scler., 11, 456-460, https://doi.org/10.3109/17482968.2010.498521.

    Article  CAS  PubMed  Google Scholar 

  162. Cudkowicz, M. E., Shefner, J. M., Schoenfeld, D. A., Zhang, H., Andreasson, K. I., Rothstein, J. D., and Drachman, D. B. (2006) Trial of celecoxib in amyotrophic lateral sclerosis, Ann. Neurol., 60, 22-31, https://doi.org/10.1002/ana.20903.

    Article  CAS  PubMed  Google Scholar 

  163. Meininger, V., Drory, V. E., Leigh, P. N., Ludolph, A., Robberecht, W., and Silani, V. (2009) Glatiramer acetate has no impact on disease progression in ALS at 40 mg/day: a double- blind, randomized, multicentre, placebo-controlled trial, Amyotroph. Lateral Scler., 10, 378-383, https://doi.org/10.3109/17482960902803432.

    Article  CAS  PubMed  Google Scholar 

  164. Ferrante, K. L., Shefner, J., Zhang, H., Betensky, R., O’Brien, M., Yu, H., Fantasia, M., Taft, J., Beal, M. F., Traynor, B., Newhall, K., Donofrio, P., Caress, J., Ashburn, C., Freiberg, B., O'Neill, C., Paladenech, C., Walker, T., Pestronk, A., Abrams, B., et al. (2005) Tolerance of high-dose (3,000 mg/day) coenzyme Q10 in ALS, Neurology, 65, 1834-1836, https://doi.org/10.1212/01.wnl.0000187070.35365.d7.

    Article  CAS  PubMed  Google Scholar 

  165. Rosenfeld, J., King, R. M., Jackson, C. E., Bedlack, R. S., Barohn, R. J., Dick, A., Phillips, L. H., Chapin, J., Gelinas, D. F., and Lou, J. S. (2008) Creatine monohydrate in ALS: effects on strength, fatigue, respiratory status and ALSFRS, Amyotroph. Lateral Scler., 9, 266-272, https://doi.org/10.1080/17482960802028890.

    Article  CAS  PubMed  Google Scholar 

  166. Cudkowicz, M. E., van den Berg, L. H., Shefner, J. M., Mitsumoto, H., Mora, J. S., Ludolph, A., Hardiman, O., Bozik, M. E., Ingersoll, E. W., Archibald, D., Meyers, A. L., Dong, Y., Farwell, W. R., and Kerr, D. A. (2013) Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER): a randomised, double-blind, phase 3 trial, Lancet. Neurol., 12, 1059-1067, https://doi.org/10.1016/s1474-4422(13)70221-7.

    Article  CAS  PubMed  Google Scholar 

  167. Lenglet, T., Lacomblez, L., Abitbol, J. L., Ludolph, A., Mora, J. S., Robberecht, W., Shaw, P. J., Pruss, R. M., Cuvier, V., and Meininger, V. (2014) A phase II-III trial of olesoxime in subjects with amyotrophic lateral sclerosis, Eur. J. Neurol., 21, 529-536, https://doi.org/10.1111/ene.12344.

    Article  CAS  PubMed  Google Scholar 

  168. Nam, J. Y., Lee, T. Y., Kim, K., Chun, S., Kim, M. S., Shin, J. H., Sung, J. J., Kim, B. J., Kim, B. J., Oh, K. W., Kim, K. S., and Kim, S. H. (2022) Efficacy and safety of Lenzumestrocel (Neuronata-R® inj.) in patients with amyotrophic lateral sclerosis (ALSUMMIT study): study protocol for a multicentre, randomized, double-blind, parallel-group, sham procedure-controlled, phase III trial, Trials, 23, 415, https://doi.org/10.1186/s13063-022-06327-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Amado, D. A., and Davidson, B. L. (2021) Gene therapy for ALS: a review, Mol. Ther., 29, 3345-3358, https://doi.org/10.1016/j.ymthe.2021.04.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Boros, B. D., Schoch, K. M., Kreple, C. J., and Miller, T. M. (2022) Antisense oligonucleotides for the study and treatment of ALS, Neurotherapeutics, 19, 1145-1158, https://doi.org/10.1007/s13311-022-01247-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Miller, T., Cudkowicz, M., Shaw, P. J., Andersen, P. M., Atassi, N., Bucelli, R. C., Genge, A., Glass, J., Ladha, S., Ludolph, A. L., Maragakis, N. J., McDermott, C. J., Pestronk, A., Ravits, J., Salachas, F., Trudell, R., Van Damme, P., Zinman, L., Bennett, C. F., Lane, R., et al. (2020) Phase 1-2 Trial of Antisense Oligonucleotide Tofersen for SOD1 ALS, New Engl. J. Med., 383, 109-119, https://doi.org/10.1056/NEJMoa2003715.

    Article  CAS  PubMed  Google Scholar 

  172. Sareen, D., O'Rourke, J. G., Meera, P., Muhammad, A. K., Grant, S., Simpkinson, M., Bell, S., Carmona, S., Ornelas, L., Sahabian, A., Gendron, T., Petrucelli, L., Baughn, M., Ravits, J., Harms, M. B., Rigo, F., Bennett, C. F., Otis, T. S., Svendsen, C. N., and Baloh, R. H. (2013) Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion, Sci. Translat. Med., 5, 208ra149, https://doi.org/10.1126/scitranslmed.3007529.

    Article  CAS  Google Scholar 

  173. Korobeynikov, V. A., Lyashchenko, A. K., Blanco-Redondo, B., Jafar-Nejad, P., and Shneider, N. A. (2022) Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis, Nat. Med., 28, 104-116, https://doi.org/10.1038/s41591-021-01615-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Scoles, D. R., Meera, P., Schneider, M. D., Paul, S., Dansithong, W., Figueroa, K. P., Hung, G., Rigo, F., Bennett, C. F., Otis, T. S., and Pulst, S. M. (2017) Antisense oligonucleotide therapy for spinocerebellar ataxia type 2, Nature, 544, 362-366, https://doi.org/10.1038/nature22044.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  175. Blair, H. A. (2023) Tofersen: first approval, Drugs, 83, 1039-1043, https://doi.org/10.1007/s40265-023-01904-6.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Science Foundation (project no. 22-74-10050).

Author information

Authors and Affiliations

Authors

Contributions

A.R. and D.Sh. wrote the manuscript. E.B. prepared the section “Prospects for the Study of FUS-Proteinopathy and Treatment of ALS”. A.U. and S.F. proposed a general manuscript concept and edited the manuscript.

Corresponding author

Correspondence to Sergei Funikov.

Ethics declarations

This work does not contain any studies involving human and animal subjects. The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Uspekhi Biologicheskoi Khimii, 2024, Vol. 64, pp. 73-116.

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezvykh, A., Shteinberg, D., Bronovitsky, E. et al. Animal Models of FUS-Proteinopathy: A Systematic Review. Biochemistry Moscow 89 (Suppl 1), S34–S56 (2024). https://doi.org/10.1134/S0006297924140037

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297924140037

Keywords

Navigation