Skip to main content
Log in

The Role of Hypoxia-Inducible Factor in the Mechanisms of Aging

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Aging is accompanied by a reduction in the oxygen delivery to all organs and tissues and decrease in the oxygen partial pressure in them, resulting in the development of hypoxia. The lack of oxygen activates cell signaling pathway mediated by the hypoxia-inducible transcription factor (HIF), which exists in three isoforms – HIF-1, HIF-2, and HIF-3. HIF regulates expression of several thousand genes and is a potential target for the development of new drugs for the treatment of many diseases, including those associated with age. Human organism and organisms of laboratory animals differ in their tolerance to hypoxia and expression of HIF and HIF-dependent genes, which may contribute to the development of inflammatory, tumor, and cardiovascular diseases. Currently, the data on changes in the HIF expression with age are contradictory, which is mostly due to the fact that such studies are conducted in different age groups, cell types, and model organisms, as well as under different hypoxic conditions and mainly in vitro. Furthermore, the observed discrepancies can be due to the individual tolerance of the studied organisms to hypoxia, which is typically not taken into account. Therefore, the purpose of this review was to analyze the published data on the connection between the mechanisms of aging, basal tolerance to hypoxia, and changes in the level of HIF expression with age. Here, we summarized the data on the age-related changes in the hypoxia tolerance, HIF expression and the role of HIF in aging, which is associated with its involvement in the molecular pathways mediated by insulin and IGF-1 (IIS), sirtuins (SIRTs), and mTOR. HIF-1 interacts with many components of the IIS pathway, in particular with FOXO, the activation of which reduces production of reactive oxygen species (ROS) and increases hypoxia tolerance. Under hypoxic conditions, FOXO is activated via both HIF-dependent and HIF-independent pathways, which contributes to a decrease in the ROS levels. The activity of HIF-1 is regulated by all members of the sirtuin family, except SIRT5, while the mechanisms of SIRT interaction with HIF-2 and HIF-3 are poorly understood. The connection between HIF and mTOR and its inhibitor, AMPK, has been identified, but its exact mechanism has yet to be studied. Understanding the role of HIF and hypoxia in aging and pathogenesis of age-associated diseases is essential for the development of new approaches to the personalized therapy of these diseases, and requires further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated protein kinase

EPO:

erythropoietin

FIH:

factor inhibiting HIF

GLUT:

glucose transporter

HIF:

hypoxia-inducible factor

HRE:

hypoxia response element

IGF-1:

insulin-like growth factor 1

IIS:

insulin and IGF-1 signaling

LPS:

lipopolysaccharide

MAPK:

mitogen-activated protein kinase

mTOR:

mammalian target of rapamycin

NF-κB:

nuclear factor-κB

PI3K:

phosphoinositide 3-kinase

SIRS:

systemic inflammatory response syndrome

ROS:

reactive oxygen species

SIRT:

sirtuin

VEGF:

vascular endothelial growth factor

VHL:

Von Hippel–Lindau E3 ubiquitin ligase complex

References

  1. Semenza, G. L. (2014) Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology, Annu. Rev. Pathol., 9, 47-71, https://doi.org/10.1146/annurev-pathol-012513-104720.

    Article  CAS  PubMed  Google Scholar 

  2. Fitzpatrick, S. F. (2019) Immunometabolism and sepsis: a role for HIF? Front. Mol. Biosci., 6, 85, https://doi.org/10.3389/fmolb.2019.00085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kunej, T. (2021) Integrative map of HIF1A regulatory elements and variations, Genes, 12, 1526, https://doi.org/10.3390/genes12101526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fratantonio, D., Cimino, F., Speciale, A., and Virgili, F. (2018) Need (more than) two to Tango: Multiple tools to adapt to changes in oxygen availability, BioFactors, 44, 207-218, https://doi.org/10.1002/biof.1419.

    Article  CAS  PubMed  Google Scholar 

  5. Koh, M. Y., and Powis, G. (2012) Passing the baton: the HIF switch, Trends Biochem. Sci., 37, 364-372, https://doi.org/10.1016/j.tibs.2012.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Suzuki, N., Gradin, K., Poellinger, L., and Yamamoto, M. (2017) Regulation of hypoxia-inducible gene expression after HIF activation, Exp. Cell Res., 356, 182-186, https://doi.org/10.1016/j.yexcr.2017.03.013.

    Article  CAS  PubMed  Google Scholar 

  7. Dzhalilova, D. Sh., and Makarova, O. V. (2020) Differences in tolerance to hypoxia: physiological, biochemical, and molecular-biological characteristics, Biomedicines, 8, 428, https://doi.org/10.3390/biomedicines8100428.

    Article  CAS  PubMed Central  Google Scholar 

  8. Chen, R., Lai, U. H., Zhu, L., Singh, A., Ahmed, M., et al. (2018) Reactive oxygen species formation in the brain at different oxygen levels: the role of hypoxia inducible factors, Front Cell Dev Biol., 6, 132, https://doi.org/10.3389/fcell.2018.00132.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pham, K., Parikh, K., and Heinrich, E. C. (2021) Hypoxia and inflammation: insights from high-altitude physiology, Front. Physiol., 12, 676782, https://doi.org/10.3389/fphys.2021.676782.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rose, M. R. (2009) Adaptation, aging, and genomic information, Aging (Albany NY), 1, 444-450, https://doi.org/10.18632/aging.100053.

    Article  Google Scholar 

  11. Ogunshola, O. O., and Antoniou, X. (2009) Contribution of hypoxia to Alzheimer’s disease: is HIF-1alpha a mediator of neurodegeneration? Cell. Mol. Life Sci., 66, 3555-3563, https://doi.org/10.1007/s00018-009-0141-0.

    Article  CAS  PubMed  Google Scholar 

  12. Lähteenvuo, J., and Rosenzweig, A. (2012) Effects of aging on angiogenesis, Circ. Res., 27, 1252-1264, https://doi.org/10.1161/CIRCRESAHA.111.246116.

    Article  CAS  Google Scholar 

  13. Ahluwalia, A., Jones, M. K., Szabo, S., and Tarnawski, A. S. (2014) Aging impairs transcriptional regulation of vascular endothelial growth factor in human microvascular endothelial cells: implications for angiogenesis and cell survival, J. Physiol. Pharmacol., 65, 209-215.

    CAS  PubMed  Google Scholar 

  14. Rea, I. M., Gibson, D. S., McGilligan, V., McNerlan, S. E., Alexander, H. D., et al. (2018) Age and age-related diseases: role of inflammation triggers and cytokines, Front. Immunol., 9, 586, https://doi.org/10.3389/fimmu.2018.00586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hou, Y., Dan, X., Babbar, M., Wei, Y., Hasselbalch, S. G., et al. (2019) Ageing as a risk factor for neurodegenerative disease, Nat. Rev. Neurol., 15, 565-581, https://doi.org/10.1038/s41582-019-0244-7.

    Article  PubMed  Google Scholar 

  16. Dombrovskaya, Yu. F. (1961) Clinic and Pathogenesis of a Hypoxemia of a Growing Organism, Medgiz, Moscow, p. 255.

  17. Kolchinskaya A. Z. (1964) Oxygen Insufficiency and Age, Naukova Dumka, Kiev, p. 256.

  18. Singer, D. (1999) Neonatal tolerance to hypoxia: a comparative-physiological approach, Comp. Biochem. Physiol. A Mol. Integr. Physiol., 123, 221-234, https://doi.org/10.1016/s1095-6433(99)00057-4.

    Article  CAS  PubMed  Google Scholar 

  19. Dzhalilova, D. Sh., Kosyreva, A. M., Vishnyakova, P. A., Zolotova, N. A., Tsvetkov, I. S., et al. (2021) Age-related differences in hypoxia-associated genes and cytokine profile in male Wistar rats, HELIYON, 7, e08085, https://doi.org/10.1016/j.heliyon.2021.e08085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kirova, Y. I., Germanova, E. L., and Lukyanova, L. D. (2013) Phenotypic features of the dynamics of HIF-1α levels in rat neocortex in different hypoxia regimens, Bull. Exp. Biol. Med., 154, 718-722, https://doi.org/10.1007/s10517-013-2038-z.

    Article  CAS  PubMed  Google Scholar 

  21. Brooks, J. T., Elvidge, G. P., Glenny, L., Gleadle, J. M., Liu, C., et al. (2008) Variations within oxygen-regulated gene expression in humans, J. Appl. Physiol., 106, 212-220, https://doi.org/10.1152/japplphysiol.90578.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Van Patot, M. C., and Gassmann, M. (2011) Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2a, High Alt. Med. Biol., 12, 157-167, https://doi.org/10.1089/ham.2010.1099.

    Article  CAS  PubMed  Google Scholar 

  23. Dzhalilova, D. Sh., Kosyreva, A. M., Diatroptov, M. E., Ponomarenko, E. A., Tsvetkov, I. S., et al. (2019) Dependence of the severity of the systemic inflammatory response on resistance to hypoxia in male Wistar rats, J. Inflam. Res., 12, 73-86, https://doi.org/10.2147/JIR.S194581.

    Article  CAS  Google Scholar 

  24. Halligan, D. N., Murphy, S. J. E., and Taylor, C. T. (2016) The hypoxia-inducible factor (HIF) couples immunity with metabolism, Semin. Immunol., 28, 469-477, https://doi.org/10.1016/j.smim.2016.09.004.

    Article  CAS  PubMed  Google Scholar 

  25. Frede, S., Stockmann, C., Freitag, P., and Fandrey, J. (2006) Bacterial lipopolysaccharide induces HIF-1 activation in human monocytes via p44/42 MAPK and NF-κB, Biochem. J., 396, 517-527, https://doi.org/10.1042/BJ20051839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, Z., Yao, L., Yang, J., Wang, Z., and Du, G. (2018) PI3K/Akt and HIF-1 signaling pathway in hypoxia-ischemia, Mol. Med. Rep., 18, 3547-3554, https://doi.org/10.3892/mmr.2018.9375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Treins, C., Giorgetti-Peraldi, S., Murdaca, J., Semenza, G. L., and Van Obberghen, E. (2002) Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway, J. Biol. Chem., 277, 27975-27981, https://doi.org/10.1074/jbc.M204152200.

    Article  CAS  PubMed  Google Scholar 

  28. BelAiba, R. S., Bonello, S., Zahringer, C., Schmidt, S., Hess, J., et al. (2007) Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol 3-kinase and nuclear factor kappaB in pulmonary artery smooth muscle cells, Mol. Biol. Cell, 18, 4691-4697, https://doi.org/10.1091/mbc.e07-04-0391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Van Uden, P., Kenneth, N. S., and Rocha, S. (2008) Regulation of hypoxia-inducible factor-1alpha by NF-kappaB, Biochem. J., 412, 477-484, https://doi.org/10.1042/BJ20080476.

    Article  CAS  PubMed  Google Scholar 

  30. Dodd, K. M., Yang, J., Shen, M. H., Sampson, J. R., and Tee, A. R. (2015) mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3, Oncogene, 34, 2239-2250, https://doi.org/10.1038/onc.2014.164.

    Article  CAS  PubMed  Google Scholar 

  31. Mironova, G. D., Shigaeva, M. I., Gritsenko, E. N., Murzaeva, S. V., Gorbacheva, O. S., et al. (2010) Functioning of the mitochondrial ATP-dependent potassium channel in rats varying in their resistance to hypoxia. Involvement of the channel in the process of animal’s adaptation to hypoxia, J. Bioenerg. Biomembr., 42, 473-481, https://doi.org/10.1007/s10863-010-9316-5.

    Article  CAS  PubMed  Google Scholar 

  32. Jain, K., Suryakumar, G., Prasad, R., and Ganju, L. (2013) Upregulation of cytoprotective defense mechanisms and hypoxia-responsive proteins imparts tolerance to acute hypobaric hypoxia, High Alt. Med. Biol., 14, 65-77, https://doi.org/10.1089/ham.2012.1064.

    Article  CAS  PubMed  Google Scholar 

  33. Soree, P., Gupta, R. K., Singh, K., Desiraju, K., Agrawal, A., et al. (2016) Raised HIF1α during normoxia in high altitude pulmonary edema susceptible non-mountaineers, Sci. Rep., 6, 26468, https://doi.org/10.1038/srep26468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dzhalilova, D. Sh., Diatroptov, M. E., Tsvetkov, I. S., Makarova, O. V., and Kuznetsov, S. L. (2018) Expression of Hif-1α, Nf-κb, and Vegf genes in the liver and blood serum levels of HIF-1α, erythropoietin, VEGF, TGF-β, 8-isoprostane, and corticosterone in Wistar rats with high and low resistance to hypoxia, Bull. Exp. Biol. Med., 165, 781-785, https://doi.org/10.1007/s10517-018-4264-x.

    Article  CAS  PubMed  Google Scholar 

  35. Lukyanova, L. D. (2019) Signaling Mechanisms of Hypoxia, Russian Academy of Sciences, Moscow, p. 215.

  36. Kurhaluk, N., Lukash, O., Nosar, V., Portnychenko, A., Portnichenko, V., et al. (2019) Liver mitochondrial respiratory plasticity and oxygen uptake evoked by cobalt chloride in rats with low and high resistance to extreme hypobaric hypoxia, Can. J. Physiol. Pharmacol., 97, 392-399, https://doi.org/10.1139/cjpp-2018-0642.

    Article  CAS  PubMed  Google Scholar 

  37. Tanimoto, K., Yoshiga, K., Eguchi, H., Kaneyasu, M., Ukon, K., et al. (2003) Hypoxia-inducible factor-1alpha polymorphisms associated with enhanced transactivation capacity, implying clinical significance, Carcinogenesis, 24, 1779-1783, https://doi.org/10.1093/carcin/bgg132.

    Article  CAS  PubMed  Google Scholar 

  38. Bert, P. (1878) La pression barometrique; recherches de physiologie experimentale, G. Masson, Paris.

  39. Kosyreva, A. M., Dzhalilova, D. S., Tsvetkov, I. S., Diatroptov, M. E., and Makarova, O. V. (2019) Age-specific features of hypoxia tolerance and intensity of lipopolysaccharide-induced systemic inflammatory response in Wistar rats, Bull. Exp. Biol. Med., 166, 699-703, https://doi.org/10.1007/s10517-019-04421-3.

    Article  CAS  PubMed  Google Scholar 

  40. Korneev, A. A., Komissarova, I. A., and Nartsissov, Y. R. (1993) The possibility of using glutathione as a protector during exposure to hypoxia, Bull. Exp. Biol. Med., 116, 1089-1092, https://doi.org/10.1007/BF00820226.

    Article  Google Scholar 

  41. Seredenko, M. M. (1963) On the question of some features of the reaction of the aged organism to acute hypoxia, in Oxygen Deficiency, Academy of Sciences of the Ukrainian SSR, Kiev.

  42. Tang, X. G., Zhang, J. H., Qin, J., Gao, X. B., Li, Q. N., et al. (2014) Age as a risk factor for acute mountain sickness upon rapid ascent to 3,700 m among young adult Chinese men, Clin. Interv. Aging, 9, 1287-1294, https://doi.org/10.2147/CIA.S67052.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yang, B., Sun, Z.-J., Cao, F., Zhao, H., Li, C.-W., et al. (2015) Obesity is a risk factor for acute mountain sickness: A prospective study in Tibet railway construction workers on Tibetan plateau, Eur. Rev. Med. Pharmacol. Sci., 19, 119-122.

    CAS  PubMed  Google Scholar 

  44. Guo, G., Zhu, G., Sun, W., Yin, C., Ren, X., et al. (2014) Association of arterial oxygen saturation and acute mountain sickness susceptibility: a meta-analysis, Cell Biochem. Biophys., 70, 1427-1432, https://doi.org/10.1007/s12013-014-0076-4.

    Article  CAS  PubMed  Google Scholar 

  45. Ziaee, V., Yunesian, M., Ahmadinejad, Z., Halabchi, F., Kordi, R., et al. (2003) Acute mountain sickness in Iranian trekkers around mount Damavand (5671m) in Iran, Wild. Environ. Med., 14, 214-219, https://doi.org/10.1580/1080-6032(2003)14[214:amsiit]2.0.co;2.

    Article  Google Scholar 

  46. Honigman, B., Theis, M. K., Koziol-McLain, J., Roach, R., Yip, R., et al. (1993) Acute mountain sickness in a general tourist population at moderate altitudes, Ann. Intern. Med., 118, 587-592, https://doi.org/10.7326/0003-4819-118-8-199304150-00003.

    Article  CAS  PubMed  Google Scholar 

  47. Gaillard, S., Dellasanta, P., Loutan, L., and Kayser, B. (2004) Awareness, prevalence, medication use, and risk factors of acute mountain sickness in tourists trekking around the Annapurnas in Nepal: a 12-year follow-up, High Alt. Med. Biol., 5, 410-419, https://doi.org/10.1089/ham.2004.5.410.

    Article  PubMed  Google Scholar 

  48. Wu, Y., Zhang, C., Chen, Y., and Luo, Y. J. (2018) Association between acute mountain sickness (AMS) and age: a meta-analysis, Mil. Med. Res., 5, 14, https://doi.org/10.1186/s40779-018-0161-x.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Richalet, J. P., Larmignat, P., Poitrine, E., Letournel, M., and Canoui-Poitrine, F. (2012) Physiological risk factors for severe highaltitude illness: A prospective cohort study, Am. J. Respir. Crit. Care Med., 185, 192-198, https://doi.org/10.1164/rccm.201108-1396OC.

    Article  PubMed  Google Scholar 

  50. Canouï-Poitrine, F., Veerabudun, K., Larmignat, P., Letournel, M., Bastuji-Garin, S., et al. (2014) Risk prediction score for severe high altitude illness: A Cohort Study, PLoS One, 9, e100642, https://doi.org/10.1371/journal.pone.0100642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., and Kroemer, G. (2013) The hallmarks of aging, Cell, 153, 1194-1217, https://doi.org/10.1016/j.cell.2013.05.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hayflick, L., and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains, Exp. Cell Res., 25, 585-621, https://doi.org/10.1016/0014-4827(61)90192-6.

    Article  CAS  PubMed  Google Scholar 

  53. Olovnikov, A. M. (1996) Telomeres, telomerase, and aging: origin of the theory, Exp. Gerontol., 31, 443-448, https://doi.org/10.1016/0531-5565(96)00005-8.

    Article  CAS  PubMed  Google Scholar 

  54. Carneiro, M. C., Henriques, C. M., Nabais, J., Ferreira, T., Carvalho, T., et al. (2016) Short telomeres in key tissues initiate local and systemic aging in Zebrafish, PLoS Genet., 12, e1005798, https://doi.org/10.1371/journal.pgen.1005798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lopes-Paciencia, S., Saint-Germain, E., Rowell, M. C., Ruiz, A. F., Kalegari, P., et al. (2019) The senescence-associated secretory phenotype and its regulation, Cytokine, 117, 15-22, https://doi.org/10.1016/j.cyto.2019.01.013.

    Article  CAS  PubMed  Google Scholar 

  56. Cummins, E. P., Berra, E., Comerford, K. M., Ginouves, A., Fitzgerald, K. T., et al. (2006) Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity, Proc. Natl. Acad. Sci. USA, 103, 18154-18159, https://doi.org/10.1073/pnas.0602235103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Harman, D. (1956) Aging: a theory based on free radical and radiation chemistry, J. Gerontol., 11, 298-300, https://doi.org/10.1093/geronj/11.3.298.

    Article  CAS  PubMed  Google Scholar 

  58. Pomatto, L. C. D., and Davies, K. J. A. (2018) Adaptive homeostasis and the free radical theory of ageing, Free Radic. Biol. Med., 124, 420-430, https://doi.org/10.1016/j.freeradbiomed.2018.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Korbecki, J., Simińska, D., Gąssowska-Dobrowolska, M. (2021) Chronic and cycling hypoxia: drivers of cancer chronic inflammation through HIF-1 and NF-κB activation: a review of the molecular mechanisms, Int. J. Mol. Sci., 22, 10701, https://doi.org/10.3390/ijms221910701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Skulachev, V.P. (2012) What is “phenoptosis” and how to fight it? Biochemistry (Moscow), 77, 689-706, https://doi.org/10.1134/S0006297912070012.

    Article  CAS  Google Scholar 

  61. Zorov, D. B., Popkov, V. A., Zorova, L. D., Vorobjev, I. A., Pevzner, I. B., et al. (2017) Mitochondrial aging: is there a mitochondrial clock? J. Gerontol. A Biol. Sci. Med. Sci., 72, 1171-1179, https://doi.org/10.1093/gerona/glw184.

    Article  CAS  PubMed  Google Scholar 

  62. Yuan, Y., Cruzat, V. F., Newsholme, P., Cheng, J., Chen, Y., and Lu, Y. (2016) Regulation of SIRT1 in aging: Roles in mitochondrial function and biogenesis, Mech. Ageing Dev., 155, 10-21, https://doi.org/10.1016/j.mad.2016.02.003.

    Article  CAS  PubMed  Google Scholar 

  63. Saldmann, F., Viltard, M., Leroy, C., and Friedlander, G. (2019) The Naked Mole Rat: a unique example of positive oxidative stress, Oxid. Med. Cell Longev., 2019, 4502819, https://doi.org/10.1155/2019/4502819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liam, E., Tina, W., Maria, R., and Matthew, E. P. (2022) Naked Mole-Rat cortex maintains reactive oxygen species homeostasis during in vitro hypoxia or ischemia and reperfusion, Curr. Neuropharmacol., https://doi.org/10.2174/1570159X20666220327220929.

    Article  PubMed  Google Scholar 

  65. Pan, H., and Finkel, T. (2017) Key proteins and pathways that regulate lifespan, J. Biol. Chem., 292, 6452-6460, https://doi.org/10.1074/jbc.R116.771915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yu, M., Zhang, H., Wang, B., Zhang, Y., Zheng, X., et al. (2021) Key signaling pathways in aging and potential interventions for healthy aging, Cells, 10, 660, https://doi.org/10.3390/cells10030660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Milman, S., Huffman, D. M., and Barzilai, N. (2016) The somatotropic axis in human aging: framework for the current state of knowledge and future research, Cell Metab., 23, 980-989, https://doi.org/10.1016/j.cmet.2016.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zelzer, E., Levy, Y., Kahana, C., Shilo, B. Z., Rubinstein, M., and Cohen, B. (1998) Insulin induces transcription of target genes through the hypoxia-inducible factor HIF1α/ARNT, EMBO J., 17, 5085-5094, https://doi.org/10.1093/emboj/17.17.5085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zundel, W., Schindler, C., Haas-Kogan, D., Koong, A., Kaper, F., et al. (2000) Loss of PTEN facilitates HIF-1-mediated gene expression, Genes Dev., 14, 391-396, https://doi.org/10.1101/gad.14.4.391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Murtaza, G., Khan, A. K., Rashid, R., Muneer, S., Hasan, S. M. F., et al. (2017) FOXO transcriptional factors and long-term living, Oxid. Med. Cell Longev., 2017, 3494289, https://doi.org/10.1155/2017/3494289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Klotz, L. O., Sánchez-Ramos, C., Prieto-Arroyo, I., Urbánek, P., Steinbrenner, H., et al. (2015) Redox regulation of FoxO transcription factors, Redox Biol., 6, 51-72, https://doi.org/10.1016/j.redox.2015.06.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xuan, Z., and Zhang, M. Q. (2005) From worm to human: bioinformatics approaches to identify FOXO target genes, Mech. Ageing Dev., 126, 209-215, https://doi.org/10.1016/j.mad.2004.09.021.

    Article  CAS  PubMed  Google Scholar 

  73. Asada, S., Daitoku, H., Matsuzaki, H., Saito, T., Sudo, T., et al. (2007) Mitogen-activated protein kinases, Erk and p38, phosphorylate and regulate Foxo1, Cell Signal., 19, 519-527, https://doi.org/10.1016/j.cellsig.2006.08.015.

    Article  CAS  PubMed  Google Scholar 

  74. Kops, G. J. P. L., Dansen, T. B., Polderman, P. E., Saarloos, I., Wirtz, K. W. A., et al. (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress, Nature, 419, 316-321, https://doi.org/10.1038/nature01036.

    Article  CAS  PubMed  Google Scholar 

  75. Tran, H., Brunet, A., Grenier, J. M., Datta, S. R., Fornace, A. J., et al. (2002) DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein, Science, 296, 530-534, https://doi.org/10.1126/science.1068712..

    Article  CAS  PubMed  Google Scholar 

  76. Ogg, S., Paradis, S., Gottlieb, S., Patterson, G. I., Lee, L., et al. (1997) The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans, Nature, 389, 994-999, https://doi.org/10.1038/40194.

    Article  CAS  PubMed  Google Scholar 

  77. Tsuchiya, K., Westerterp, M., Murphy, A. J., Subramanian, V., Ferrante, A.W., et al. (2013) Expanded granulocyte/monocyte compartment in myeloidspecific triple FoxO knockout increases oxidative stress and accelerates atherosclerosis in mice, Circ. Res., 112, 992-1003, https://doi.org/10.1161/CIRCRESAHA.112.300749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hu, M. C., Lee, D. F., Xia, W., Golfman, L. S., Ou-Yang, Fu, et al. (2004) IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a, Cell, 117, 225-237, https://doi.org/10.1016/s0092-8674(04)00302-2.

    Article  CAS  PubMed  Google Scholar 

  79. Kane, L. P., Shapiro, V. S., Stokoe, D., and Weiss, A. (1999) Induction of NF-kappaB by the Akt/PKB kinase, Curr. Biol., 9, 601-604, https://doi.org/10.1016/s0960-9822(99)80265-6.

    Article  CAS  PubMed  Google Scholar 

  80. Chen, P. S., Chiu, W. T., Hsu, P. L., Lin, S. C., Peng, I. C., et al. (2020) Pathophysiological implications of hypoxia in human diseases, J. Biomed. Sci., 27, 63, https://doi.org/10.1186/s12929-020-00658-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lappano, R., Todd, L. A., Stanic, M., Cai, Q., Maggiolini, M., et al. (2022) Multifaceted interplay between hormones, growth factors and hypoxia in the tumor microenvironment, Cancers (Basel), 14, 539, https://doi.org/10.3390/cancers14030539.

    Article  CAS  Google Scholar 

  82. Bakker, W. J., Harris, I. S., and Mak, T. W. (2007) FOXO3a is activated in response to hypoxic stress and inhibits HIF1-induced apoptosis via regulation of CITED2, Mol. Cell, 28, 941-953, https://doi.org/10.1016/j.molcel.2007.10.035.

    Article  CAS  PubMed  Google Scholar 

  83. Jensen, K. S., Binderup, T., Jensen, K. T., Therkelsen, I., Borup, R., et al. (2011) FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function, EMBO J., 30, 4554-4570, https://doi.org/10.1038/emboj.2011.323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Barretto, E. C., Polan, D. M., Beevor-Potts, A. N., Lee, B., and Grewal, S. S. (2020) Tolerance to hypoxia is promoted by FOXO regulation of the innate immunity transcription factor NF-κB/Relish in Drosophila, Genetics, 215, 1013-1025, https://doi.org/10.1534/genetics.120.303219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Scott, B. A., Avidan, M. S., and Crowder, C. M. (2002) Regulation of hypoxic death in C. elegans by the insulin/IGF receptor homolog DAF-2, Science, 296, 2388-2391, https://doi.org/10.1126/science.1072302.

    Article  CAS  PubMed  Google Scholar 

  86. Liu, X., Cai, X., Hu, B., Mei, Z., Zhang, D., et al. (2016) Forkhead transcription factor 3a (FOXO3a) modulates hypoxia signaling via up-regulation of the von Hippel-Lindau gene (VHL), J. Biol. Chem., 291, 25692-25705, https://doi.org/10.1074/jbc.M116.745471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Samarin, J., Wessel, J., Cicha, I., Kroening, S., Warnecke, C., et al. (2010) FoxO proteins mediate hypoxic induction of connective tissue growth factor in endothelial cells, J. Biol. Chem., 285, 4328-4336, https://doi.org/10.1074/jbc.M109.049650.

    Article  CAS  PubMed  Google Scholar 

  88. Xu, G. (2018) HIF-1-mediated expression of Foxo1 serves an important role in the proliferation and apoptosis of osteoblasts derived from children’s iliac cancellous bone, Mol. Med. Rep., 17, 6621-6631, https://doi.org/10.3892/mmr.2018.8675.

    Article  CAS  PubMed  Google Scholar 

  89. Zheng, X., Zhai, B., Koivunen, P., Shin, S. J., Lu, G., et al. (2014) Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase, Genes Dev., 28, 1429-1444, https://doi.org/10.1101/gad.242131.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Grabowska, W., Sikora, E., and Bielak-Zmijewska, A. (2017) Sirtuins, a promising target in slowing down the ageing process, Biogerontology, 4, 447-476, https://doi.org/10.1007/s10522-017-9685-9.

    Article  CAS  Google Scholar 

  91. Ji, Z., Liu, G. H., and Qu, J. (2022) Mitochondrial sirtuins, metabolism, and aging, J. Genet. Genomics, 49, 287-298, https://doi.org/10.1016/j.jgg.2021.11.005.

    Article  PubMed  Google Scholar 

  92. Bhatt, V., and Tiwari, A. K. (2022) Sirtuins, a key regulator of ageing and age-related neurodegenerative diseases, Int. J. Neurosci., 13, 1-26, https://doi.org/10.1080/00207454.2022.2057849.

    Article  CAS  Google Scholar 

  93. Mercken, E. M., Mitchell, S. J., Martin-Montalvo, A., et al. (2014) SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass, Aging Cell, 5, 787-796, https://doi.org/10.1111/acel.12220.

    Article  CAS  Google Scholar 

  94. Brunet, A., Sweeney, L. B., Sturgill, J. F., Chua, K. F., Greer, P. L., et al. (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase, Science, 303, 2011-2015, https://doi.org/10.1126/science.1094637.

    Article  CAS  PubMed  Google Scholar 

  95. Maillet, A., and Pervaiz, S. (2012) Redox regulation of p53, redox effectors regulated by p53: a subtle balance, Antioxid. Redox Signal., 11, 1285-1294, https://doi.org/10.1089/ars.2011.4434.

    Article  CAS  Google Scholar 

  96. Ou, H.-L., and Schumacher, B. (2018) DNA damage responses and p53 in the aging process, Blood, 5, 488-495, https://doi.org/10.1182/blood-2017-07-746396.

    Article  CAS  Google Scholar 

  97. Dioum, E. M., Chen, R., Alexander, M. S., Zhang, Q., Hogg, R. T., et al. (2009) Regulation of hypoxia-inducible factor 2 signaling by the stress-responsive deacetylase sirtuin 1, Science, 324, 1289-1293, https://doi.org/10.1126/science.1169956.

    Article  CAS  PubMed  Google Scholar 

  98. Lim, J. H., Lee, Y. M., Chun, Y. S., Chen, J., Kim, J. E., et al. (2010) Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1, Mol. Cell, 38, 864-878, https://doi.org/10.1016/j.molcel.2010.05.023.

    Article  CAS  PubMed  Google Scholar 

  99. Chen, R., Dioum, E. M., Hogg, R. T., Gerard, R. D., and Garcia, J. A. (2011) Hypoxia increases sirtuin 1 expression in a hypoxia-inducible factor-dependent manner, J. Biol Chem., 286, 13869-13878, https://doi.org/10.1074/jbc.M110.175414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Laemmle, A., Lechleiter, A., Roh, V., Schwarz, C., Portmann, S., et al. (2012) Inhibition of SIRT1 impairs the accumulation and transcriptional activity of HIF-1 protein under hypoxic conditions, PLoS One, 7, e33433, https://doi.org/10.1371/journal.pone.0033433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gomes, A. P., Price, N. L., Ling, A. J., Moslehi, J. J., Montgomery, M. K., et al. (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging, Cell, 155, 1624-1638, https://doi.org/10.1016/j.cell.2013.11.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Joo, H.-Y., Yun, M., Jeong, J., Park, E.-R., Shin, H.-J., et al. (2015) SIRT1 deacetylates and stabilizes hypoxia-inducible factor-1α (HIF-1α) via direct interactions during hypoxia, Biochem. Biophys. Res. Commun., 462, 294-300, https://doi.org/10.1016/j.bbrc.2015.04.119.

    Article  CAS  PubMed  Google Scholar 

  103. Bai, M., Lu, C., An, L., Gao, Q., Xie, W., et al. (2020) SIRT1 relieves necrotizing enterocolitis through inactivation of hypoxia-inducible factor (HIF)-1a, Cell Cycle, 19, 2018-2027, https://doi.org/10.1080/15384101.2020.1788251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lee, S. D., Kim, W., Jeong, J.-W., Park, J.-W., and Kim, J.-E. (2016) AK-1, a SIRT2 inhibitor, destabilizes HIF-1 and diminishes its transcriptional activity during hypoxia, Cancer Lett., 373, 138-145, https://doi.org/10.1016/j.canlet.2016.01.031.

    Article  CAS  PubMed  Google Scholar 

  105. Seo, K.-S., Park, J.-H., Heo, J. Y., Jing, K., Han, J., et al. (2015) SIRT2 regulates tumour hypoxia response by promoting HIF-1 hydroxylation, Oncogene, 34, 1354-1362, https://doi.org/10.1038/onc.2014.76.

    Article  CAS  PubMed  Google Scholar 

  106. Geng, H., Liu, Q., Xue, C., David, L. L., Beer, T. M., et al. (2012) HIF1 protein stability is increased by acetylation at Lysine 709, J. Biol. Chem., 287, 35496-35505, https://doi.org/10.1074/jbc.M112.400697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kaitsuka, T., Matsushita, M., and Matsushita, N. (2020) SIRT2 inhibition activates hypoxia-inducible factor 1 signaling and mediates neuronal survival, Biochem. Biophys. Res. Commun., 529, 957-962, https://doi.org/10.1016/j.bbrc.2020.06.159.

    Article  CAS  PubMed  Google Scholar 

  108. Hu, A., Yang, L., Liang, J., Lu, D., Zhang, J., et al. (2020) SIRT2 modulates VEGFD-associated lymphangiogenesis by deacetylating EPAS1 in human head and neck, Cancer. Mol. Carcinog., 59, 1280-1291, https://doi.org/10.1002/mc.23256.

    Article  CAS  PubMed  Google Scholar 

  109. Jing, E., Emanuelli, B., Hirschey, M. D., Boucher, J., Lee, K. Y., et al. (2011) Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production, Proc. Nat. Acad. Sci. USA, 35, 14608-14613, https://doi.org/10.1073/pnas.1111308108.

    Article  Google Scholar 

  110. Finley, L. W., Carracedo, A., Lee, J., Souza, A., Egia, A., et al. (2011) SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization, Cancer Cell, 19, 416-428, https://doi.org/10.1016/j.ccr.2011.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bell, E. L., Emerling, B. M., Ricoult, S. J., and Guarente, L. (2011) SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production, Oncogene, 30, 2986-2996, https://doi.org/10.1038/onc.2011.37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu, B., Che, W., Xue, J., Zheng, C., Tang, K., et al. (2013) SIRT4 prevents hypoxia-induced apoptosis in H9c2 cardiomyoblast cells, Cell. Physiol. Biochem., 32, 655-662, https://doi.org/10.1159/000354469.

    Article  CAS  PubMed  Google Scholar 

  113. Tong, Y., Kai, J., Wang, S., Yu, Y., Xie, S., et al. (2021) VHL regulates the sensitivity of clear cell renal cell carcinoma to SIRT4-mediated metabolic stress via HIF-1α/HO-1 pathway, Cell Death Dis., 12, 621, https://doi.org/10.1038/s41419-021-03901-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yang, L., Ma, X., He, Y., Chen Yuan, C., Chen, Q., et al. (2017) Sirtuin 5: a review of structure, known inhibitors and clues for developing new inhibitors, Sci. China Life Sci., 3, 249-256, https://doi.org/10.1007/s11427-016-0060-7.

    Article  CAS  Google Scholar 

  115. D’Onofrio, N., Servillo, L., Giovane, A., Casale, R., Vitiello, M., et al. (2016) Ergothioneine oxidation in the protection against high-glucose induced endothelial senescence: Involvement of SIRT1 and SIRT6, Free Radic. Biol. Med., 96, 211-222, https://doi.org/10.1016/j.freeradbiomed.2016.04.013.

    Article  CAS  PubMed  Google Scholar 

  116. Wang, X.-X., Wang, X.-L., Tong, M., Gan, Lu, Chen, H., et al. (2016) SIRT6 protects cardiomyocytes against ischemia/reperfusion injury by augmenting FoxO3α-dependent antioxidant defense mechanisms, Basic Res. Cardiol., 2, 13, https://doi.org/10.1007/s00395-016-0531-z.

    Article  CAS  Google Scholar 

  117. Zhong, L., D’Urso, A., Toiber, D., Sebastian, C., Henry, R. E., et al. (2010) The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1[alpha], Cell, 140, 280-293, https://doi.org/10.1016/j.cell.2009.12.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Yang, Z., Huang, Y., Zhu, L., Yang, K., Liang, K., et al. (2021) SIRT6 promotes angiogenesis and hemorrhage of carotid plaque via regulating HIF-1 and reactive oxygen species, Cell Death Dis., 12, 77, https://doi.org/10.1038/s41419-020-03372-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kiran, S., Anwar, T., Kiran, M., and Ramakrishna, G. (2015) Sirtuin 7 in cell proliferation, stress and disease: rise of the seventh sirtuin! Cell. Signall., 3, 673-682, https://doi.org/10.1016/j.cellsig.2014.11.026.

    Article  CAS  Google Scholar 

  120. Hubbi, M. E., Hu, H., Gilkes, D. M., and Semenza, G. L. (2013) Sirtuin-7 inhibits the activity of hypoxia-inducible factors, J. Biol. Chem., 288, 20768-20775, https://doi.org/10.1074/jbc.M113.476903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liu, G. Y., and Sabatini, D. M. (2020) mTOR at the nexus of nutrition, growth, ageing and disease, Nat. Rev. Mol. Cell Biol., 21, 183-203, https://doi.org/10.1038/s41580-019-0199-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gwinn, D. M., Shackelford, D. B., Egan, D. F., Mihaylova, M. M., Mery, A., et al. (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint, Mol. Cell, 30, 214-226, https://doi.org/10.1016/j.molcel.2008.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Brugarolas, J., Lei, K., Hurley, R. L., Manning, B. D., Reiling, J. H., et al. (2004) Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex, Genes Dev., 18, 2893-2904, https://doi.org/10.1101/gad.1256804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Canto, C., Gerhart-Hines, Z., Feige, J. N., Lagouge, M., Noriega, L., et al. (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity, Nature, 458, 1056-1060, https://doi.org/10.1038/nature07813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lan, F., Cacicedo, J. M., Ruderman, N., and Ido, Y. (2008) SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1: possible role in AMP-activated protein kinase activation, J. Biol. Chem., 283, 27628-27635, https://doi.org/10.1074/jbc.M805711200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Greer, E. L., Oskoui, P. R., Banko, M. R., Maniar, J. M., Gygi, M. P., et al. (2007) The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor, J. Biol. Chem., 282, 30107-30119, https://doi.org/10.1074/jbc.M705325200.

    Article  CAS  PubMed  Google Scholar 

  127. Sánchez-Álvarez, M., Strippoli, R., Donadelli, M., Bazhin, A. V., and Cordani, M. (2019) Sestrins as a therapeutic bridge between ROS and autophagy in cancer, Cancers (Basel), 11, 1415, https://doi.org/10.3390/cancers11101415.

    Article  CAS  Google Scholar 

  128. Dzhalilova, D. S., and Makarova, O. V. (2021) HIF-dependent mechanisms of relationship between hypoxia tolerance and tumor development, Biochemistry (Moscow), 86, 1163-1180, https://doi.org/10.1134/S0006297921100011.

    Article  CAS  Google Scholar 

  129. Jung, S. N., Yang, W. K., Kim, J., Kim, H. S., Kim, E. J., et al. (2008) Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells, Carcinogenesis, 29, 713-721, https://doi.org/10.1093/carcin/bgn032.

    Article  CAS  PubMed  Google Scholar 

  130. Abdel Malik, R., Zippel, N., Frömel, T., Heidler, J., Zukunft, S., et al. (2017) AMP-Activated Protein Kinase α2 in neutrophils regulates vascular repair via Hypoxia-Inducible Factor-1α and a network of proteins affecting metabolism and apoptosis, Circ. Res., 120, 99-109, https://doi.org/10.1161/CIRCRESAHA.116.309937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Treins, C., Murdaca, J., Van Obberghen, E., and GiorgettiPeraldi, S. (2006) AMPK activation inhibits the expression of HIF-1α induced by insulin and IGF-1, Biochem. Biophys. Res. Commun., 342, 1197-1202, https://doi.org/10.1016/j.bbrc.2006.02.088.

    Article  CAS  PubMed  Google Scholar 

  132. Faubert, B., Boily, G., Izreig, S., Griss, T., Samborska, B., et al. (2013) AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo, Cell Metab., 17, 113-124, https://doi.org/10.1016/j.cmet.2012.12.001.

    Article  CAS  PubMed  Google Scholar 

  133. Seo, K., Seo, S., Ki, S. H., and Shin, S. M. (2016) Sestrin2 inhibits hypoxia-inducible factor-1α accumulation via AMPK-mediated prolyl hydroxylase regulation, Free Radic. Biol. Med., 101, 511-523, https://doi.org/10.1016/j.freeradbiomed.2016.11.014.

    Article  CAS  PubMed  Google Scholar 

  134. Dengler, F. (2020) Activation of AMPK under hypoxia: many roads leading to Rome, Int. J. Mol. Sci., 21, 2428, https://doi.org/10.3390/ijms21072428.

    Article  CAS  PubMed Central  Google Scholar 

  135. Mulligan, J. D., Gonzalez, A. A., Kumar, R., Davis, A. J., and Saupe, K. W. (2005) Aging elevates basal adenosine monophosphate-activated protein kinase (AMPK) activity and eliminates hypoxic activation of AMPK in mouse liver, J. Gerontol., 60, 21-27, https://doi.org/10.1093/gerona/60.1.21.

    Article  Google Scholar 

  136. Arsham, A. M., Howell, J. J., and Simon, M. C. (2003) A novel hypoxia-inducible factor-independent hypoxic response regulating mammalian target of rapamycin and its targets, J. Biol. Chem., 278, 29655-29660, https://doi.org/10.1074/jbc.M212770200.

    Article  CAS  PubMed  Google Scholar 

  137. Chun, Y., and Kim, J. (2021) AMPK-mTOR signaling and cellular adaptations in hypoxia, Int. J. Mol. Sci., 22, 9765, https://doi.org/10.3390/ijms22189765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kaper, F., Dornhoefer, N., and Giaccia, A. J. (2006) Mutations in the PI3K/PTEN/TSC2 pathway contribute to mammalian target of rapamycin activity and increased translation under hypoxic conditions, Cancer Res., 66, 1561-1569, https://doi.org/10.1158/0008-5472.CAN-05-3375.

    Article  CAS  PubMed  Google Scholar 

  139. Ashok, B. S., Ajith, T. A., and Sivanesan, S. (2017) Hypoxia-inducible factors as neuroprotective agent in Alzheimer’s disease, Clin. Exp. Pharmacol. Physiol., 44, 327-334, https://doi.org/10.1111/1440-1681.12717.

    Article  CAS  PubMed  Google Scholar 

  140. Tan, T., Marin-Garcia, J., Damle, S., and Weiss, H. R. (2010) Hypoxia Inducible Factor-1 improves inotropic responses of cardiac myocytes in aging heart without affecting mitochondrial activity, Exp. Physiol., 95, 712-722, https://doi.org/10.1113/expphysiol.2009.051649.

    Article  CAS  PubMed  Google Scholar 

  141. Liu, Y., Liu, F., Iqbal, K., Grundke-Iqbal, I., and Gong, C. X. (2008) Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer’s disease, FEBS Lett., 582, 359-364, https://doi.org/10.1016/j.febslet.2007.12.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ndubuizu, O. I., Chavez, J. C., and LaManna, J. C. (2009) Increased prolyl 4-hydroxylase expression and differential regulation of hypoxia-inducible factors in the aged rat brain, Am. J. Physiol. Regul. Integr. Comp. Physiol., 297, 158-165, https://doi.org/10.1152/ajpregu.90829.2008.

    Article  CAS  Google Scholar 

  143. Frenkel-Denkberg, G., Gershon, D., and Levy, A. P. (1999) The function of hypoxia-inducible factor 1 (HIF-1) is impaired in senescent mice, FEBS Lett., 462, 341-344, https://doi.org/10.1016/s0014-5793(99)01552-5.

    Article  CAS  PubMed  Google Scholar 

  144. Rohrbach, S., Teichert, S., Niemann, B., Franke, C., and Katschinski, D. (2008) Caloric restriction counteracts age-dependent changes in prolyl-4-hydroxylase domain (PHD) 3 expression, Biogerontology, 9, 169-176, https://doi.org/10.1007/s10522-008-9126-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rivard, A., Berthou-Soulie, L., Principe, N., Kearney, M., Curry, C., et al. (2000) Age-dependent defect in vascular endothelial growth factor expression is associated with reduced hypoxia-inducible factor 1 activity, J. Biol. Chem., 275, 29643-29647, https://doi.org/10.1074/jbc.M001029200.

    Article  CAS  PubMed  Google Scholar 

  146. Kim, H. J., Jung, K. J., Yu, B. P., Cho, C. G., Choi, J. S., et al. (2002) Modulation of redox-sensitive transcription factors by calorie restriction during aging, Mech. Ageing Dev., 123, 1589-1595, https://doi.org/10.1016/s0047-6374(02)00094-5.

    Article  CAS  PubMed  Google Scholar 

  147. Kang, M. J., Kim, H. J., Kim, H. K., Lee, J. Y., Kim, D. H., et al. (2005) The effect of age and calorie restriction on HIF-1-responsive genes in aged liver, Biogerontology, 6, 27-37, https://doi.org/10.1007/s10522-004-7381-z.

    Article  CAS  PubMed  Google Scholar 

  148. Lee, S. J., Hwang, A. B., and Kenyon, C. (2010) Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity, Curr. Biol., 20, 2131-2136, https://doi.org/10.1016/j.cub.2010.10.057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ebersole, J. L., Novak, M. J., Orraca, L., Martinez-Gonzalez, J., Kirakodu, S., et al. (2018) Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues, Immunology, 154, 452-464, https://doi.org/10.1111/imm.12894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang, H., Wu, H., Guo, H., Zhang, G., Zhang, R., and Zhan, S. (2012) Increased hypoxia-inducible factor 1alpha expression in rat brain tissues in response to aging, Neural Regen Res., 7, 778-782, https://doi.org/10.3969/j.issn.1673-5374.2012.10.010.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Tanaka, T., Kato, H., Kojima, I., Ohse, T., Son, D., et al. (2006) Hypoxia and expression of hypoxia-inducible factor in the aging kidney, J. Gerontol. Med. Sci., 61, 795-805, https://doi.org/10.1093/gerona/61.8.795.

    Article  Google Scholar 

  152. Leiser, S. F., and Kaeberlein, M. (2010) The hypoxia-inducible factor HIF-1 functions as both a positive and negative modulator of aging, Biol. Chem., 391, 1131-1137, https://doi.org/10.1515/BC.2010.123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mehta, R., Steinkraus, K. A., Sutphin, G. L., Ramos, F. J., Shamieh, L. S., et al. (2009) Proteasomal regulation of the hypoxic response modulates aging in C. elegans, Science, 324, 1196-1198, https://doi.org/10.1126/science.1173507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kaeberlein, M., and Kapahi, P. (2009) The hypoxic response and aging, Cell Cycle, 8, 2324, https://doi.org/10.4161/cc.8.15.9126.

    Article  CAS  PubMed  Google Scholar 

  155. Jiang, H., Guo, R., and Powell-Coffman, J. A. (2001) The Caenorhabditis elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia, Proc. Natl. Acad. Sci. USA, 98, 7916-7921, https://doi.org/10.1073/pnas.141234698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chen, D., Thomas, E. L., and Kapahi, P. (2009) HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans, PLoS Genet., 5, e1000486, https://doi.org/10.1371/journal.pgen.1000486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhang, Y., Shao, Z., Zhai, Z., Shen, C., and Powell-Coffman, J. A. (2009) The HIF-1 hypoxia-inducible factor modulates lifespan in C. elegans, PLoS One, 4, e6348, https://doi.org/10.1371/journal.pone.0006348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Bellier, A., Chen, C.-S., Kao, C.-Y., Cinar, H. N., Aroian, R. V. (2009) Hypoxia and the hypoxic response pathway protect against pore-forming Toxins in C. elegans, PLoS Pathog., 5, e1000689, https://doi.org/10.1371/journal.ppat.1000689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bosch-Marce, M., Okuyama, H., Wesley, J., Sarkar, K., Kimura, H., et al. (2007) Effects of aging and hypoxia-inducible factor-1 activity on angiogenic cell mobilization and recovery of perfusion after limb ischemia, Circ. Res., 101, 1310-1318, https://doi.org/10.1161/CIRCRESAHA.107.153346.

    Article  CAS  PubMed  Google Scholar 

  160. Cheng, X., Kuzuya, M., Kim, W., Song, H., Hu, L., et al. (2010) Exercise training stimulates ischemia-induced neovascularization via phosphatidylinositol 3-kinase/akt-dependent hypoxia-induced factor-1 alpha reactivation in mice of advanced age, Circulation, 122, 707-716, https://doi.org/10.1161/CIRCULATIONAHA.109.909218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the grant from the President of the Russian Federation for the state support of young Russian scientists – candidates of sciences MK-2573.2022.1.4 “Prediction of the course of a systemic inflammatory response in old rats based on initial resistance to hypoxia” and State Budget Project no. 122030200530-6 “Cellular and molecular-biological mechanisms of inflammation in the development of socially significant human diseases”.

Author information

Authors and Affiliations

Authors

Contributions

D.S.D. analyzed the literature data and prepared the manuscript and the figures; O.V.M. discussed the published data and reviewed the manuscript.

Corresponding author

Correspondence to Dzhuliia Sh. Dzhalilova.

Ethics declarations

The authors declare no conflicts of interest. This article does not contain the studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhalilova, D.S., Makarova, O.V. The Role of Hypoxia-Inducible Factor in the Mechanisms of Aging. Biochemistry Moscow 87, 995–1014 (2022). https://doi.org/10.1134/S0006297922090115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922090115

Keywords

Navigation