Skip to main content

Advertisement

Log in

Caloric restriction counteracts age-dependent changes in prolyl-4-hydroxylase domain (PHD) 3 expression

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Caloric restriction remains the most reproducible measure known to extend life span or diminish age-associated changes. Previously, we have described an elevated expression of the prolyl-4-hydroxylase domain (PHD) 3 with increasing age in mouse and human heart. PHDs modulate the cellular response towards hypoxia by regulating the stability of the α-subunit of the transcriptional activator hypoxia inducible factor (HIF). In the present study we demonstrate that elevated PHD3, but not PHD1 or PHD2, expression is not restricted to the heart but does also occur in rat skeletal muscle and liver. Elevated expression of PHD3 is counteracted by a decrease in caloric intake (40% caloric restriction applied for 6 months) in all three tissues. Age-associated changes in PHD3 expression inversely correlated with the expression of the HIF-target gene macrophage migration inhibitory factor (MIF), which has been previously described to be involved in cellular HIF-mediated anti-ageing effects. These data give insight into the molecular consequences of caloric restriction, which influences hypoxia-mediated gene expression via PHD3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ARNT:

Aryl hydrocarbon receptor

HIF-1:

Hypoxia-inducible factor-1

MIF:

Macrophage migration inhibitory factor

PHD:

Prolyl-4-hydroxylase domain

References

  • Abete P, Cioppa A, Calabrese C, Pascucci I, Cacciatore F, Napoli C, Carnovale V, Ferrara N, Rengo F (1999) Ischemic threshold and myocardial stunning in the aging heart. Exp Gerontol 34:875–884

    Article  CAS  PubMed  Google Scholar 

  • Ahmet I, Wan R, Mattson MP, Lakatta EG, Talan M (2005) Cardioprotection by intermittent fasting in rats. Circulation 112:3115–3121

    Article  PubMed  Google Scholar 

  • Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279:38458–38465

    Article  CAS  PubMed  Google Scholar 

  • Bosch-Marce M, Okuyama H, Wesley JB, Sarkar K, Kimura H, Liu YV, Zhang H, Strazza M, Rey S, Savino L et al (2007) Effects of Aging and Hypoxia-Inducible Factor-1 Activity on Angiogenic Cell Mobilization and Recovery of Perfusion Following Limb Ischemia. Circ Res 101:1310–1318

    Article  CAS  PubMed  Google Scholar 

  • Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294:1337–1340

    Article  CAS  PubMed  Google Scholar 

  • Chang EI, Loh SA, Ceradini DJ, Chang EI, Lin SE, Bastidas N, Aarabi S, Chan DA, Freedman ML, Giaccia AJ, Gurtner GC (2007) Age decreases endothelial progenitor cell recruitment through decreases in hypoxia-inducible factor 1α stabilization during ischemia. Circulation 116:2818–2829

    Article  CAS  PubMed  Google Scholar 

  • Coppe JP, Kauser K, Campisi J, Beausejour CM (2006) Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J Biol Chem 281:29568–29574

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio C, Bianchi G, Cacchio M, Artese L, Rapino C, Macri MA, Di Ilio C (2005) Oxygen and life span: chronic hypoxia as a model for studying HIF-1α, VEGF and NOS during aging. Respir Physiol Neurobiol 147:31–38

    Article  CAS  PubMed  Google Scholar 

  • Dozmorov I, Galecki A, Chang Y, Krzesicki R, Vergara M, Miller RA (2002) Gene expression profile of long-lived snell dwarf mice. J Gerontol A Biol Sci Med Sci 57:B99–B108

    Article  PubMed  Google Scholar 

  • Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, et al (2001) C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation. Cell 107:43–54

    Article  CAS  PubMed  Google Scholar 

  • Facchetti F, Monzani E, Cavallini G, Bergamini E, La Porta CA (2007) Effect of a caloric restriction regimen on the angiogenic capacity of aorta and on the expression of endothelin-1 during ageing. Exp Gerontol 42:662–667

    Article  CAS  PubMed  Google Scholar 

  • Frenkel-Denkberg G, Gershon D, Levy AP (1999) The function of hypoxia-inducible factor 1 (HIF-1) is impaired in senescent mice. FEBS Lett 462:341–344

    Article  CAS  PubMed  Google Scholar 

  • Higami Y, Barger JL, Page GP, Allison DB, Smith SR, Prolla TA, Weindruch R (2006) Energy restriction lowers the expression of genes linked to inflammation, the cytoskeleton, the extracellular matrix, and angiogenesis in mouse adipose tissue. J Nutr 136:343–352

    CAS  PubMed  Google Scholar 

  • Hwang IS, Fung ML, Liong EC, Tipoe GL, Tang F (2007) Age-related changes in adrenomedullin expression and hypoxia-inducible factor-1 activity in the rat lung and their responses to hypoxia. J Gerontol A Biol Sci Med Sci 62:41–49

    Article  PubMed  Google Scholar 

  • Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin Jr WG (2001) HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468

    Article  CAS  PubMed  Google Scholar 

  • Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ et al (2001) Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    Article  CAS  PubMed  Google Scholar 

  • Kang MJ, Kim HJ, Kim HK, Lee JY, Kim DH, Jung KJ, Kim KW, Baik HS, Yoo MA, Yu BP, Chung HY (2005) The effect of age and calorie restriction on HIF-1-responsive genes in aged liver. Biogerontology 6:27–37

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Inoue T, Asanoma K, Nishimura C, Matsuda T. Wake N (2006) Induction of human endometrial cancer cell senescence through modulation of HIF-1α activity by EGLN1. Int J Cancer 118:1144–1153

    Article  CAS  PubMed  Google Scholar 

  • Katschinski DM (2006) Is there a molecular connection between hypoxia and aging?. Exp Gerontol 41:482–484

    Article  CAS  PubMed  Google Scholar 

  • Koubova J, Guarente L (2003) How does calorie restriction work? Genes Dev 17:313–321

    Article  CAS  PubMed  Google Scholar 

  • Mariani J, Ou R, Bailey M, Rowland M, Nagley P, Rosenfeldt F, Pepe S (2000) Tolerance to ischemia and hypoxia is reduced in aged human myocardium. J Thorac Cardiovasc Surg 120:660–667

    Article  CAS  PubMed  Google Scholar 

  • Marxsen JH, Stengel P, Doege K, Heikkinen P, Jokilehto T, Wagner T, Jelkmann W, Jaakkola P, Metzen E (2004) Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases. Biochem J 381:761–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masoro EJ (2000) Caloric restriction and aging: an update. Exp Gerontol 35:299–305

    Article  CAS  PubMed  Google Scholar 

  • Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275

    Article  CAS  PubMed  Google Scholar 

  • Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M (2005) Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell 4:119–125

    Article  CAS  PubMed  Google Scholar 

  • Miller RA, Chang Y, Galecki AT, Al-Regaiey K, Kopchick JJ, Bartke A (2002). Gene expression patterns in calorically restricted mice: partial overlap with long-lived mutant mice. Mol Endocrinol 16: 2657–2666

    Article  CAS  PubMed  Google Scholar 

  • Paolucci S, Antonucci G, Troisi E, Bragoni M, Coiro P, De Angelis D, Pratesi L, Venturiero V, Grasso MG (2003) Aging and stroke rehabilitation. a case-comparison study. Cerebrovasc Dis 15:98–105

    Article  PubMed  Google Scholar 

  • Rivard A, Berthou-Soulie L, Principe N, Kearney M, Curry C, Branellec D, Semenza GL, Isner JM (2000) Age-dependent defect in vascular endothelial growth factor expression is associated with reduced hypoxia-inducible factor 1 activity. J Biol Chem 275:29643–29647

    Article  CAS  PubMed  Google Scholar 

  • Rohrbach S, Aurich AC, Li L, Niemann B (2007) Age-associated loss in adiponectin-activation by caloric restriction: Lack of compensation by enhanced inducibility of adiponectin paralogs CTRP2 and CTRP7. Mol Cell Endocrinol 277:26–34

    Article  CAS  PubMed  Google Scholar 

  • Rohrbach S, Gruenler S, Teschner M, Holtz J (2006a) The thioredoxin system in aging muscle: key role of mitochondrial thioredoxin reductase in the protective effects of caloric restriction? Am J Physiol Regul Integr Comp Physiol 291:R927–R935

    Article  CAS  PubMed  Google Scholar 

  • Rohrbach S, Niemann B, Abushouk AM, Holtz J (2006b) Caloric restriction and mitochondrial function in the ageing myocardium. Exp Gerontol 41:525–531

    Article  CAS  PubMed  Google Scholar 

  • Rohrbach S, Simm A, Pregla R, Franke C, Katschinski DM (2005) Age-dependent increase of prolyl-4-hydroxylase domain (PHD) 3 expression in human and mouse heart. Biogerontology 6:165–171

    Article  CAS  PubMed  Google Scholar 

  • Speakman JR, Hambly C (2007) Starving for life: what animal studies can and cannot tell us about the use of caloric restriction to prolong human lifespan. J Nutr 137:1078–1086

    CAS  PubMed  Google Scholar 

  • Welford SM, Bedogni B, Gradin K, Poellinger L, Broome Powell M, Giaccia AJ (2006) HIF-1α delays premature senescence through the activation of MIF. Genes Dev 20:3366–3371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenger RH, Stiehl DP, Camenisch G (2005) Integration of oxygen signaling at the consensus HRE. Sci STKE 306:re12

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants to D.M.K. (DFG Ka 1269/8–1) and S.R (DFG RO 2328/2–1; Deutsche Stiftung für Herzforschung F/05/05). We appreciate the technical assistance of B. Heinze.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dörthe M. Katschinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohrbach, S., Teichert, S., Niemann, B. et al. Caloric restriction counteracts age-dependent changes in prolyl-4-hydroxylase domain (PHD) 3 expression. Biogerontology 9, 169–176 (2008). https://doi.org/10.1007/s10522-008-9126-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-008-9126-x

Keywords

Navigation