Skip to main content
Log in

Lamin A as a Determinant of Mechanical Properties of the Cell Nucleus in Health and Disease

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

One of the main factors associated with worse prognosis in oncology is metastasis, which is based on the ability of tumor cells to migrate from the primary source and to form secondary tumors. The search for new strategies to control migration of metastatic cells is one of the urgent issues in biomedicine. One of the strategies to stop spread of cancer cells could be regulation of the nuclear elasticity. Nucleus, as the biggest and stiffest cellular compartment, determines mechanical properties of the cell as a whole, and, hence, could prevent cell migration through the three-dimensional extracellular matrix. Nuclear rigidity is maintained by the nuclear lamina, two-dimensional network of intermediate filaments in the inner nuclear membrane (INM). Here we present the most significant factors defining nucleus rigidity, discuss the role of nuclear envelope composition in the cell migration, as well consider possible approaches to control lamina composition in order to change plasticity of the cell nucleus and ability of the tumor cells to metastasize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ER:

endoplasmic reticulum

HGPS:

Hutchinson–Guildford Progeria

LBR:

Lamin B receptor

nt:

nucleotide

ZMPSTE24:

zinc metallopeptidase STE24

References

  1. Raab, M., Gentili, M., de Belly, H., Thiam, H.-R., Vargas, P., et al. (2016) ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death, Science, 352, 359-362, https://doi.org/10.1126/science.aad7611.

    Article  CAS  PubMed  Google Scholar 

  2. Lämmermann, T., Bader, B.L., Monkley, S. J., Worbs, T., Wedlich-Söldner, R., et al. (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing, Nature, 453, 51-55, https://doi.org/10.1038/nature06887.

    Article  CAS  PubMed  Google Scholar 

  3. Denais, C.M., Gilbert, R. M., Isermann, P., McGregor, A. L., te Lindert, M., et al. (2016) Nuclear envelope rupture and repair during cancer cell migration, Science, 352, 353-358, https://doi.org/10.1126/science.aad7297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Caille, N., Thoumine, O., Tardy, Y., and Meister, J.-J. (2002) Contribution of the nucleus to the mechanical properties of endothelial cells, J. Biomech., 35, 177-187, https://doi.org/10.1016/S0021-9290(01)00201-9.

    Article  PubMed  Google Scholar 

  5. Guilak, F., Tedrow, J. R., and Burgkart, R. (2000) Viscoelastic properties of the cell nucleus, Biochem. Biophys. Res. Commun., 269, 781-786, https://doi.org/10.1006/bbrc.2000.2360.

    Article  CAS  PubMed  Google Scholar 

  6. Shankar, A., Syamala, S., and Kalidindi, S. (2010) Insufficient rest or sleep and its relation to cardiovascular disease, diabetes and obesity in a national, multiethnic sample, PLoS One, 5, e14189, https://doi.org/10.1371/journal.pone.0014189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wolf, K., te Lindert, M., Krause, M., Alexander, S., te Riet, J., et al. (2013) Physical limits of cell migration: Control by ECM space and nuclear deformation and tuning by proteolysis and traction force, J. Cell Biol., 201, 1069-1084, https://doi.org/10.1083/jcb.201210152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Finlan, L.E., and Bickmore, W.A. (2008) Porin new light onto chromatin and nuclear organization, Genome Biol., 9, 222, https://doi.org/10.1186/gb-2008-9-5-222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mewborn, S. K., Puckelwartz, M. J., Abuisneineh, F., Fahrenbach, J. P., Zhang, Y., et al. (2010) Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation, PLoS One, 5, e14342, https://doi.org/10.1371/journal.pone.0014342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dechat, T., Adam, S. A., Taimen, P., Shimi, T., and Goldman, R. D. (2010) Nuclear lamins, Cold Spring Harb. Perspect. Biol., 2, 1-23, https://doi.org/10.1101/cshperspect.a000547.

    Article  CAS  Google Scholar 

  11. Schirmer, E.C., Guan, T., and Gerace, L. (2001) Involvement of the lamin rod domain in heterotypic lamin interactions important for nuclear organization, J. Cell Biol., 152, 479-489, https://doi.org/10.1083/jcb.153.3.479.

    Article  Google Scholar 

  12. Fuchs, E., Weber, K. (1994) Intermediate filaments: structure, dynamics, function and disease, Annu. Rev. Biochem., 63, 345-82, https://doi.org/10.1146/annurev.bi.63.070194.002021.

    Article  CAS  PubMed  Google Scholar 

  13. McKeon, F. D., Kirschner, M. W., and Caput, D. (1986) Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins, Nature, 319, 463-468, https://doi.org/10.1038/319463a0.

    Article  CAS  PubMed  Google Scholar 

  14. Rusiñol, A. E., Sinensky, M. S. (2006) Farnesylated lamins, progeroid syndromes and farnesyl transferase inhibitors, J. Cell Sci., 119, 3265-3272, https://doi.org/10.1242/jcs.03156.

    Article  CAS  PubMed  Google Scholar 

  15. Adam, S.A., Butin-Israeli, V., Cleland, M. M., Shimi, T., and Goldman, R. D. (2013) Disruption of lamin B1 and lamin B2 processing and localization by farnesyltransferase inhibitors, Nucleus, 4, 142-150, https://doi.org/10.4161/nucl.24089.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Güttinger, S., Laurell, E., and Kutay, U. (2009) Orchestrating nuclear envelope disassembly and reassembly during mitosis, Nat. Rev. Mol. Cell Biol., 10, 178-191, https://doi.org/10.1038/nrm2641.

    Article  CAS  PubMed  Google Scholar 

  17. Aebi, U., Cohn, J., Buhle, L., Gerace, L. (1986) The nuclear lamina is a meshwork of intermediate-type filaments, Nature, 323, 560-564, https://doi.org/10.1038/323560a0.

    Article  CAS  PubMed  Google Scholar 

  18. Hennekes, H., Nigg, E.A. (1994) The role of isoprenylation in membrane attachment of nuclear lamins. A single point mutation prevents proteolytic cleavage of the lamin A precursor and confers membrane binding properties, J. Cell Sci., 107, 1019-29.

    Article  CAS  Google Scholar 

  19. Stuurman, N., Heins, S., and Aebi, U. (1998) Nuclear lamins: their structure, assembly, and interactions, J. Struct. Biol., 122, 42-66, https://doi.org/10.1006/jsbi.1998.3987.

    Article  CAS  PubMed  Google Scholar 

  20. Shimi, T., Butin-Israeli, V., Adam, S. A., and Goldman, R. D. (2010) Nuclear lamins in cell regulation and disease, Cold Spring Harb. Symp. Quant. Biol., 75, 525-531, https://doi.org/10.1101/sqb.2010.75.045.

    Article  CAS  PubMed  Google Scholar 

  21. Turgay, Y., Eibauer, M., Goldman, A. E., Shimi, T., Khayat, M., et al. (2017) The molecular architecture of lamins in somatic cells, Nature, 543, 261-264, https://doi.org/10.1038/nature21382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shimi, T., Pfleghaar, K., Kojima, S. I., Pack, C. G., Solovei, I., et al. (2008) The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription, Genes Dev., 22, 3409-3421, https://doi.org/10.1101/gad.1735208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhironkina, O. A., Kurchashova, S. Y., Pozharskaia, V. A., Cherepanynets, V. D., Strelkova, O. S., et al. (2016) Mechanisms of nuclear lamina growth in interphase, Histochem. Cell Biol., 145, 419-432, https://doi.org/10.1007/s00418-016-1419-6.

    Article  CAS  PubMed  Google Scholar 

  24. Cho, S., Vashisth, M., Abbas, A., Majkut, S., Vogel, K., Xia, Y., et al. (2019) Mechanosensing by the lamina protects against nuclear rupture, DNA damage, and cell-cycle arrest, Dev. Cell, 49, 920-935, https://doi.org/10.1016/j.devcel.2019.04.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Irianto, J., Pfeifer, C. R., Ivanovska, I. L., Swift, J., and Discher, D. E. (2016) Nuclear lamins in cancer, Cell. Mol. Bioeng., 9, 258-267, https://doi.org/10.1007/s12195-016-0437-8.

    Article  CAS  PubMed  Google Scholar 

  26. Swift, J., Ivanovska, I. L., Buxboim, A., Harada, T., Dingal, P. C. D. P., et al. (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation, Science, 341, 1240104, https://doi.org/10.1126/science.1240104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pajerowski, J. D., Dahl, K. N., Zhong, F. L., Sammak, P. J., and Discher, D. E. (2007) Physical plasticity of the nucleus in stem cell differentiation, Proc. Natl. Acad. Sci. USA, 104, 15619-24, https://doi.org/10.1073/pnas.0702576104.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lammerding, J., Fong, L. G., Ji, J. Y., Reue, K., Stewart, C. L., et al. (2006) Lamins A and C but Not Lamin B1 regulate nuclear mechanics, J. Biol. Chem., 281, 25768-25780, https://doi.org/10.1074/jbc.M513511200.

    Article  CAS  PubMed  Google Scholar 

  29. Jung, H.J., Coffinier, C., Choe, Y., Beigneux, A. P., Davies, B. S. J., et al. (2012) Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA, Proc. Natl. Acad. Sci. USA, 109, E423-31, https://doi.org/10.1073/pnas.1111780109.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Constantinescu, D., Gray, H. L., Sammak, P. J., Schatten, G. P., and Csoka, A. B. (2006) Lamin A/C expression is a marker of mouse and human embryonic stem cell differentiation, Stem Cells, 24, 177-185, https://doi.org/10.1634/stemcells.2004-0159.

    Article  CAS  PubMed  Google Scholar 

  31. Pekovic, V., and Hutchison, C. J. (2008) Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches, J. Anat., 213, 5-25, https://doi.org/10.1111/j.1469-7580.2008.00928.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mounkes, L.C., Kozlov, S., Hernandez, L., Sullivan, T., and Stewart, C. L. (2003) A progeroid syndrome in mice is caused by defects in A-type lamins, Nature, 423, 298-301, https://doi.org/10.1038/nature01631.

    Article  CAS  PubMed  Google Scholar 

  33. Prather, R. S., Kubiak, J., Maul, G. G., First, N. L., and Schatten, G. (1991) The expression of nuclear lamin A and C epitopes is regulated by the developmental stage of the cytoplasm in mouse oocytes or embryos, J. Exp. Zool., 257, 110-114, https://doi.org/10.1002/jez.1402570114.

    Article  CAS  PubMed  Google Scholar 

  34. Rober, R.A., Sauter, H., Weber, K., and Osborn, M. (1990) Cells of the cellular immune and hemopoietic system of the mouse lack lamins A/C: distinction versus other somatic cells, J. Cell Sci., 95, 587-598.

    Article  Google Scholar 

  35. Schäpe, J., Prauße, S., Radmacher, M., and Stick, R. (2009) Influence of lamin A on the mechanical properties of amphibian oocyte nuclei measured by atomic force microscopy, Biophys. J., 96, 4319-4325, https://doi.org/10.1016/j.bpj.2009.02.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Harada, T., Swift, J., Irianto, J., Shin, J.-W., Spinler, K. R., et al. (2014) Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival, J. Cell Biol., 204, 669-682, https://doi.org/10.1083/jcb.201308029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rowat, A. C., Jaalouk, D. E., Zwerger, M., Ung, W. L., Eydelnant, I. A., et al. (2013) Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions, J. Biol. Chem., 288, 8610-8618, https://doi.org/10.1074/jbc.M112.441535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shah, P., Hobson, C. M., Cheng, S., Colville, M. J., Paszek, M. J., et al. (2021) Nuclear deformation causes DNA damage by increasing replication stress, Curr. Biol., 31, 753-765, https://doi.org/10.1016/j.cub.2020.11.037.

    Article  CAS  PubMed  Google Scholar 

  39. Olins, A. L., Herrmann, H., Lichter, P., Kratzmeier, M., Doenecke, D., and Olins, D. E. (2001) Nuclear Envelope and chromatin compositional differences comparing undifferentiated and retinoic acid- and phorbol ester-treated HL-60 cells, Exp. Cell Res., 268, 115-127, https://doi.org/10.1006/excr.2001.5269.

    Article  CAS  PubMed  Google Scholar 

  40. Pillay, J., den Braber, I., Vrisekoop, N., Kwast, L. M., de Boer, R. J., et al. (2010) In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days, Blood, 116, 625-627, https://doi.org/10.1182/blood-2010-01-259028.

    Article  CAS  PubMed  Google Scholar 

  41. Shin, J.W., Swift, J., Ivanovska, I., Spinler, K. R., Buxboim, A., and Discher, D. E. (2013) Mechanobiology of bone marrow stem cells: from myosin-II forces to compliance of matrix and nucleus in cell forms and fates, Differentiation, 86, 77-86, https://doi.org/10.1016/j.diff.2013.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kittisopikul, M., Shimi, T., Tatli, M., Tran, J. R., Zheng, Y., et al. (2021) Computational analyses reveal spatial relationships between nuclear pore complexes and specific lamins, J. Cell Biol., 220, e202007082, https://doi.org/10.1083/JCB.202007082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moir, R. D., Spann, T. P., Herrmann, H., and Goldman, R. D. (2000) Disruption of nuclear lamin organization blocks the elongation phase of DNA replication, J. Cell Biol., 149, 1179-91, https://doi.org/10.1083/jcb.149.6.1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vergnes, L., Péterfy, M., Bergo, M. O., Young, S. G., and Reue, K. (2004) Lamin B1 is required for mouse development and nuclear integrity, Proc. Natl. Acad. Sci. USA, 101, 10428-33, https://doi.org/10.1073/pnas.0401424101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Coffinier, C., Jung, H. J., Nobumori, C., Chang, S., Tu, Y., et al. (2011) Deficiencies in lamin B1 and lamin B2 cause neurodevelopmental defects and distinct nuclear shape abnormalities in neurons, Mol. Biol. Cell, 22, 4461-4703, https://doi.org/10.1091/mbc.E11-06-0504.

    Article  CAS  Google Scholar 

  46. Chen, N. Y., Yang, Y., Weston, T. A., Belling, J. N., Heizer, P., et al. (2019) An absence of lamin B1 in migrating neurons causes nuclear membrane ruptures and cell death, Proc. Natl. Acad. Sci. USA, 116, 25870-25879, https://doi.org/10.1073/pnas.1917225116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Banigan, E. J., Stephens, A. D., Marko, J. F. (2017) Mechanics and buckling of biopolymeric shells and cell nuclei, Biophys. J., 113, 1654-63, https://doi.org/10.1016/j.bpj.2017.08.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ou, H. D., Phan, S., Deerinck, T. J., Thor, A., Ellisman, M. H., and O’Shea, C. C. (2017) ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells, Science, 357, eaag0025, https://doi.org/10.1126/science.aag0025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bouck, D. C., and Bloom, K. (2007) Pericentric Chromatin is an elastic component of the mitotic spindle, Curr. Biol., 17, 741-748, https://doi.org/10.1016/j.cub.2007.03.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stephens, A. D., Banigan, E. J., Adam, S. A., Goldman, R. D., and Marko, J. F. (2017) Chromatin and lamin a determine two different mechanical response regimes of the cell nucleus, Mol. Biol. Cell, 28, 1984-1996, https://doi.org/10.1091/mbc.E16-09-0653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Booth-Gauthier, E. A., Alcoser, T. A., Yang, G., and Dahl, K. N. (2012) Force-induced changes in subnuclear movement and rheology, Biophys. J., 103, 2423-2431, https://doi.org/10.1016/j.bpj.2012.10.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chalut, K. J., Höpfler, M., Lautenschläger, F., Boyde, L., Chan, C. J., et al. (2012) Chromatin decondensation and nuclear softening accompany Nanog downregulation in embryonic stem cells, Biophys. J., 103, 2060-2070, https://doi.org/10.1016/j.bpj.2012.10.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Spagnol, S. T., and Dahl, K. N. (2016) Spatially resolved quantification of chromatin condensation through differential local rheology in cell nuclei fluorescence lifetime imaging, PLoS One, 11, e0146244, https://doi.org/10.1371/journal.pone.0146244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gerace, L., and Tapia, O. (2018) Messages from the voices within: regulation of signaling by proteins of the nuclear lamina, Curr. Opin. Cell Biol., 52, 14-21, https://doi.org/10.1016/j.ceb.2017.12.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Koch, A. J., and Holaska, J. M. (2014) Emerin in health and disease, Semin. Cell Dev. Biol., 29, 95-106, https://doi.org/10.1016/j.semcdb.2013.12.008.

    Article  CAS  PubMed  Google Scholar 

  56. Bouzid, T., Kim, E., Riehl, B. D., Esfahani, A. M., Rosenbohm, J., et al. (2019) The LINC complex, mechanotransduction, and mesenchymal stem cell function and fate, J. Biol. Eng., 13, 1-12, https://doi.org/10.1186/s13036-019-0197-9.

    Article  Google Scholar 

  57. Buxboim, A., Irianto, J., Swift, J., Athirasala, A., Shin, J.-W., et al. (2017) Coordinated increase of nuclear tension and lamin-A with matrix stiffness outcompetes lamin-B receptor that favors soft tissue phenotypes, Mol. Biol. Cell, 28, 3333-3348, https://doi.org/10.1091/mbc.E17-06-0393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu, D., Flannery, A.R., Cai, H., Ko, E., and Cao, K. (2014) Nuclear localization signal deletion mutants of lamin A and progerin reveal insights into lamin A processing and emerin targeting, Nucleus, 5, 66-74, https://doi.org/10.4161/nucl.28068.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Eisch, V., Lu, X., Gabriel, D., and Djabali, K. (2016) Progerin impairs chromosome maintenance by depleting CENP-F from metaphase kinetochores in Hutchinson–Gilford progeria fibroblasts, Oncotarget, 7, 24700-24718, https://doi.org/10.18632/oncotarget.8267.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chen, Z.-J., Wang, W.-P., Chen, Y.-C., Wang, J.-Y., Lin, W.-H., et al. (2014) Dysregulated interactions between lamin A and SUN1 induce abnormalities in the nuclear envelope and endoplasmic reticulum in progeric laminopathies, J. Cell Sci., 127, 1792-1804, https://doi.org/10.1242/jcs.139683.

    Article  CAS  PubMed  Google Scholar 

  61. Chang, W., Wang, Y., Luxton, G. W. G., Östlund, C., Worman, H. J., and Gundersen, G. G. (2019) Imbalanced nucleocytoskeletal connections create common polarity defects in progeria and physiological aging, Proc. Natl. Acad. Sci. USA, 116, 3578-3583, https://doi.org/10.1073/pnas.1809683116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Subramanian, G., Chaudhury, P., Malu, K., Fowler, S., Manmode, R., et al. (2012) Lamin B receptor regulates the growth and maturation of myeloid progenitors via its sterol reductase domain: implications for cholesterol biosynthesis in regulating myelopoiesis, J. Immunol., 188, 85-102, https://doi.org/10.4049/jimmunol.1003804.

    Article  CAS  PubMed  Google Scholar 

  63. Solovei, I., Wang, A. S., Thanisch, K., Schmidt, C. S., Krebs, S., et al. (2013) LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation, Cell, 152, 584-598, https://doi.org/10.1016/j.cell.2013.01.009.

    Article  CAS  PubMed  Google Scholar 

  64. Zink, D., Fischer, A. H., Nickerson, J. A. (2004) Nuclear structure in cancer cells, Nat. Rev. Cancer, 4, 677-87, https://doi.org/10.1038/nrc1430.

    Article  CAS  PubMed  Google Scholar 

  65. Hudson, M.E., Pozdnyakova, I., Haines, K., Mor, G., and Snyder, M. (2007) Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays, Proc. Natl. Acad. Sci. USA, 104, 17494-9, https://doi.org/10.1073/pnas.0708572104.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tilli, C. M. L. J., Ramaekers, F. C. S., Broers, J. L. V., Hutchison, C. J., and Neumann, H. A. M. (2003) Lamin expression in normal human skin, actinic keratosis, squamous cell carcinoma and basal cell carcinoma, Br. J. Dermatol., 148, 102-109, https://doi.org/10.1046/j.1365-2133.2003.05026.x.

    Article  CAS  PubMed  Google Scholar 

  67. Willis, N. D., Cox, T. R., Rahman-Casañs, S. F., Smits, K., Przyborski, S. A., et al. (2008) Lamin A/C is a risk biomarker in colorectal cancer, PLoS One, 3, e2988, https://doi.org/10.1371/journal.pone.0002988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Venables, R. S., McLean, S., Luny, D., Moteleb, E., Morley, S., et al. (2001) Expression of individual lamins in basal cell carcinomas of the skin, Br. J. Cancer, 84, 512-519, https://doi.org/10.1054/bjoc.2000.1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Agrelo, R., Setien, F., Espada, J., Artiga, M. J., Rodriguez, M., et al. (2005) Inactivation of the lamin A/C gene by cpg island promoter hypermethylation in hematologic malignancies, and its association with poor survival in nodal diffuse large B-Cell lymphoma, J. Clin. Oncol., 23, 3940-3947, https://doi.org/10.1200/JCO.2005.11.650.

    Article  CAS  PubMed  Google Scholar 

  70. Alhudiri, I. M., Nolan, C. C., Ellis, I. O., Elzagheid, A., Rakha, E. A., et al. (2019) Expression of Lamin A/C in early-stage breast cancer and its prognostic value, Breast Cancer Res. Treat., 174, 661-8, https://doi.org/10.1007/s10549-018-05092-w.

    Article  CAS  PubMed  Google Scholar 

  71. Moss, S. F., Krivosheyev, V., de Souza, A., Chin, K., Gaetz, H. P., et al. (1999) Decreased and aberrant nuclear lamin expression in gastrointestinal tract neoplasms, Gut, 45, 723-729, https://doi.org/10.1136/gut.45.5.723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Broers, J. L. V., Peeters, E. A. G., Kuijpers, H. J. H., Endert, J., Bouten, C. V. C., et al. (2004) Decreased mechanical stiffness in LMNA−/− cells is caused by defective nucleo-cytoskeletal integrity: implications for the development of laminopathies, Hum. Mol. Genet., 13, 2567-2580, https://doi.org/10.1093/hmg/ddh295.

    Article  CAS  PubMed  Google Scholar 

  73. Wong, K.-F., and Luk, J. M. (2012) in Liver Proteomics, Humana Press, Totowa, NJ, pp. 295-310.

  74. Belt, E. J. T., Fijneman, R. J. A., van den Berg, E. G., Bril, H., Delis-van Diemen, P. M., et al. (2011) Loss of lamin A/C expression in stage II and III colon cancer is associated with disease recurrence, Eur. J. Cancer, 47, 1837-1845, https://doi.org/10.1016/j.ejca.2011.04.025.

    Article  CAS  PubMed  Google Scholar 

  75. Friedl, P., Wolf, K., and Lammerding, J. (2011) Nuclear mechanics during cell migration, Curr. Opin. Cell Biol., 23, 55-64, https://doi.org/10.1016/j.ceb.2010.10.015.

    Article  CAS  PubMed  Google Scholar 

  76. Van Helvert, S., Storm, C., Friedl, P. (2018) Mechanoreciprocity in cell migration, Nat. Cell Biol., 20, 8-20, https://doi.org/10.1038/s41556-017-0012-0.

    Article  CAS  PubMed  Google Scholar 

  77. Kaspi, E., Frankel, D., Guinde, J., Perrin, S., Laroumagne, S., et al. (2017) Low lamin A expression in lung adenocarcinoma cells from pleural effusions is a pejorative factor associated with high number of metastatic sites and poor performance status, PLoS One, 12, e0183136, https://doi.org/10.1371/journal.pone.0183136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Khan, Z. S., Santos, J. M., and Hussain, F. (2018) Aggressive prostate cancer cell nuclei have reduced stiffness, Biomicrofluidics, 12, 014102, https://doi.org/10.1063/1.5019728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, Y., Jiang, J., He, L., Gong, G., and Wu, X. (2019) Effect of lamin-A expression on migration and nuclear stability of ovarian cancer cells, Gynecol. Oncol., 152, 166-176, https://doi.org/10.1016/j.ygyno.2018.10.030.

    Article  CAS  PubMed  Google Scholar 

  80. Mitchell, M. J., Denais, C., Chan, M. F., Wang, Z., Lammerding, J., and King, M. R. (2015) Lamin A/C deficiency reduces circulating tumor cell resistance to fluid shear stress, Am. J. Physiol. Physiol., 309, C736-746, https://doi.org/10.1152/ajpcell.00050.2015.

    Article  CAS  Google Scholar 

  81. Roncato, F., Regev, O., Feigelson, S. W., Yadav, S. K., Kaczmarczyk, L., et al. (2021) Reduced lamin A/C Does not facilitate cancer cell transendothelial migration but compromises lung metastasis, Cancers (Basel), 13, 2383, https://doi.org/10.3390/cancers13102383.

    Article  Google Scholar 

  82. Jia, Y., Vong, J. S.-L., Asafova, A., Garvalov, B. K., Caputo, L., et al. (2019) Lamin B1 loss promotes lung cancer development and metastasis by epigenetic derepression of RET, J. Exp. Med., 216, 1377-1395, https://doi.org/10.1084/jem.20181394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Guelen, L., Pagie, L., Brasset, E., Meuleman, W., Faza, M. B., et al. (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions, Nature, 453, 948-951, https://doi.org/10.1038/nature06947.

    Article  CAS  PubMed  Google Scholar 

  84. Shah, P. P., Donahue, G., Otte, G. L., Capell, B. C., Nelson, D. M., et al. (2013) Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape, Genes Dev., 27, 1787-99, https://doi.org/10.1101/gad.223834.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nguyen, A. V., Nyberg, K. D., Scott, M. B., Welsh, A. M., Nguyen, A. H., et al. (2016) Stiffness of pancreatic cancer cells is associated with increased invasive potential, Integr. Biol., 8, 1232-1245, https://doi.org/10.1039/C6IB00135A.

    Article  CAS  Google Scholar 

  86. Kong, L., Schäfer, G., Bu, H., Zhang, Y., Zhang, Y., and Klocker, H. (2012) Lamin A/C protein is overexpressed in tissue-invading prostate cancer and promotes prostate cancer cell growth, migration and invasion through the PI3K/AKT/PTEN pathway, Carcinogenesis, 33, 751-759, https://doi.org/10.1093/carcin/bgs022.

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, X., and Lv, Y. (2017) Suspension state increases reattachment of breast cancer cells by up-regulating lamin A/C, Biochim. Biophys. Acta Mol. Cell Res., 1864, 2272-2282, https://doi.org/10.1016/j.bbamcr.2017.09.006.

    Article  CAS  PubMed  Google Scholar 

  88. Li, L., Du, Y., Kong, X., Li, Z., Jia, Z., et al. (2013) Lamin B1 is a novel therapeutic target of betulinic acid in pancreatic cancer, Clin. Cancer Res., 19, 4651-4561, https://doi.org/10.1158/1078-0432.CCR-12-3630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu, L., Wang, J., Shi, L., Zhang, W., Du, X., et al. (2013) β-Asarone induces senescence in colorectal cancer cells by inducing lamin B1 expression, Phytomedicine, 20, 512-20, https://doi.org/10.1016/j.phymed.2012.12.008.

    Article  CAS  PubMed  Google Scholar 

  90. Fracchia, A., Asraf, T., Salmon-Divon, M., and Gerlitz, G. (2020) Increased lamin B1 levels promote cell migration by altering perinuclear actin organization, Cells, 9, 2161, https://doi.org/10.3390/cells9102161.

    Article  CAS  PubMed Central  Google Scholar 

  91. Béroud, C., Collod‐Béroud, G., Boileau, C., Soussi, T., and Junien, C. (2000) UMD (Universal Mutation Database): a generic software to build and analyze locus-specific databases, Hum. Mutat., 15, 86-94, https://doi.org/10.1002/(SICI)1098-1004(200001)15:1<86::AID-HUMU16>3.0.CO;2-4.

    Article  PubMed  Google Scholar 

  92. Padiath, Q.S., Saigoh, K., Schiffmann, R., Asahara, H., Yamada, T., et al. (2006) Lamin B1 duplications cause autosomal dominant leukodystrophy, Nat. Genet., 38, 1114-1123, https://doi.org/10.1038/ng1872.

    Article  CAS  PubMed  Google Scholar 

  93. Hegele, R. A., Cao, H., Liu, D. M., Costain, G. A., Charlton-Menys, V., et al. (2006) Sequencing of the reannotated LMNB2 gene reveals novel mutations in patients with acquired partial lipodystrophy, Am. J. Hum. Genet., 79, 383-389, https://doi.org/10.1086/505885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cristofoli, F., Moss, T., Moore, H. W., Devriendt, K., Flanagan-Steet, H., et al. (2020) De novo variants in LMNB1 cause pronounced syndromic microcephaly and disruption of nuclear envelope integrity, Am. J. Hum. Genet., 107, 753-762, https://doi.org/10.1016/j.ajhg.2020.08.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Östlund, C., Chang, W., Gundersen, G. G., and Worman, H. J. (2019) Pathogenic mutations in genes encoding nuclear envelope proteins and defective nucleocytoplasmic connections, Exp. Biol. Med., 244, 1333-1344, https://doi.org/10.1177/1535370219862243.

    Article  CAS  Google Scholar 

  96. Novelli, G., Muchir, A., Sangiuolo, F., Helbling-Leclerc, A., D’Apice, M. R., et al. (2002) Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding Lamin A/C, Am. J. Hum. Genet., 71, 426-431, https://doi.org/10.1086/341908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Vigouroux, C., Magré, J., Vantyghem, M. C., Bourut, C., Lascols, O., et al. (2000) Lamin A/C gene: Sex-determined expression of mutations in Dunnigan-type familial partial lipodystrophy and absence of coding mutations in congenital and acquired generalized lipoatrophy, Diabetes, 49, 1958-1962, https://doi.org/10.2337/diabetes.49.11.1958.

    Article  CAS  PubMed  Google Scholar 

  98. Caux, F., Dubosclard, E., Lascols, O., Buendia, B., Chazouillères, O., et al. (2003) A new clinical condition linked to a novel mutation in lamins a and c with generalized lipoatrophy, insulin-resistant diabetes, disseminated leukomelanodermic papules, liver steatosis, and cardiomyopathy, J. Clin. Endocrinol. Metab., 88, 1006-1013, https://doi.org/10.1210/jc.2002-021506.

    Article  CAS  PubMed  Google Scholar 

  99. Fatkin, D., MacRae, C., Sasaki, T., Wolff, M. R., Porcu, M., et al. (1999) Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease, N. Engl. J. Med., 341, 1715-1724, https://doi.org/10.1056/NEJM199912023412302.

    Article  CAS  PubMed  Google Scholar 

  100. Hamadouche, T., Poitelon, Y., Genin, E., Chaouch, M., Tazir, M., et al. (2008) Founder effect and estimation of the age of the c.892C>T (p.Arg298Cys) mutation in LMNA associated to Charcot–Marie–Tooth subtype CMT2B1 in families from North Western Africa, Ann. Hum. Genet., 72, 590-597, https://doi.org/10.1111/j.1469-1809.2008.00456.x.

    Article  CAS  PubMed  Google Scholar 

  101. Eriksson, M., Brown, W. T., Gordon, L. B., Glynn, M. W., Singer, J., et al. (2003) Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome, Nature, 423, 293-298, https://doi.org/10.1038/nature01629.

    Article  CAS  PubMed  Google Scholar 

  102. De Sandre-Giovannoli, A., Bernard, R., Cau, P., Navarro, C., Amiel, J., et al. (2003) Lamin A truncation in Hutchinson–Gilford progeria, Science, 300, 2055, https://doi.org/10.1126/science.1084125.

    Article  CAS  PubMed  Google Scholar 

  103. Agarwal, A. K. (2003) Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia, Hum. Mol. Genet., 12, 1995-2001, https://doi.org/10.1093/hmg/ddg213.

    Article  CAS  PubMed  Google Scholar 

  104. Smigiel, R., Jakubiak, A., Esteves-Vieira, V., Szela, K., Halon, A., et al. (2010) Novel frameshifting mutations of the ZMPSTE24 gene in two siblings affected with restrictive dermopathy and review of the mutations described in the literature, Am. J. Med. Genet. Part A, 152, 447-452, https://doi.org/10.1002/ajmg.a.33221.

    Article  CAS  Google Scholar 

  105. Navarro, C.L., Cau, P., and Lévy, N. (2006) Molecular bases of progeroid syndromes, Hum. Mol. Genet., 15, R151-61, https://doi.org/10.1093/hmg/ddl214.

    Article  CAS  PubMed  Google Scholar 

  106. Chong, J. X., Ouwenga, R., Anderson, R. L., Waggoner, D. J., and Ober, C. (2012) A population-based study of autosomal-recessive disease-causing mutations in a founder population, Am. J. Hum. Genet., 91, 608-620, https://doi.org/10.1016/j.ajhg.2012.08.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Khanna, P., Opitz, J. M., and Gilbert-Barness, E. (2008) Restrictive dermopathy: report and review, Fetal Pediatr. Pathol., 27, 105-118, https://doi.org/10.1080/15513810802077586.

    Article  PubMed  Google Scholar 

  108. Goldman, R. D., Shumaker, D. K., Erdos, M. R., Eriksson, M., Goldman, A. E., et al. (2004) Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson–Gilford progeria syndrome, Proc. Natl. Acad. Sci. USA, 101, 8963-8968, https://doi.org/10.1073/pnas.0402943101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Scaffidi, P., and Misteli, T. (2006) Lamin A-dependent nuclear defects in human aging, Science, 312, 1059-1063, https://doi.org/10.1126/science.1127168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Davidson, P. M., and Lammerding, J. (2014) Broken nuclei – lamins, nuclear mechanics, and disease, Trends Cell Biol., 24, 247-56, https://doi.org/10.1016/j.tcb.2013.11.004.

    Article  CAS  PubMed  Google Scholar 

  111. Worman, H. J., and Schirmer, E. C. (2015) Nuclear membrane diversity: underlying tissue-specific pathologies in disease? Curr. Opin. Cell Biol., 34, 101-112, https://doi.org/10.1016/j.ceb.2015.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Osmanagic-Myers, S., and Foisner, R. (2019) The structural and gene expression hypotheses in laminopathic diseases – not so different after all, Mol. Biol. Cell, 30, 1786-1790, https://doi.org/10.1091/mbc.E18-10-0672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lutz, R. J., Trujillo, M. A., Denham, K. S., Wenger, L., and Sinensky, M. (1992) Nucleoplasmic localization of prelamin A: implications for prenylation-dependent lamin A assembly into the nuclear lamina, Proc. Natl. Acad. Sci. USA, 89, 3000-3004, https://doi.org/10.1073/pnas.89.7.3000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Black, S. D. (1992) Development of hydrophobicity parameters for prenylated proteins, Biochem. Biophys. Res. Commun., 186, 1437-1442, https://doi.org/10.1016/S0006-291X(05)81567-0.

    Article  CAS  PubMed  Google Scholar 

  115. Hu, X.-T., Song, H.-C., Yu, H., Wu, Z.-C., Liu, X.-G., and Chen, W.-C. (2020) Overexpression of progerin results in impaired proliferation and invasion of non-small cell lung cancer cells, Onco. Targets. Ther., 13, 2629-2642, https://doi.org/10.2147/OTT.S237016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Booth-Gauthier, E. A., Du, V., Ghibaudo, M., Rape, A. D., Dahl, K. N., and Ladoux, B. (2013) Hutchinson–Gilford progeria syndrome alters nuclear shape and reduces cell motility in three dimensional model substrates, Integr. Biol., 5, 569, https://doi.org/10.1039/c3ib20231c.

    Article  CAS  Google Scholar 

  117. Ovsiannikova, N., Lavrushkina, S., Yudina, A., Strelkova, O., Zhironkina, O., and Kireev, I. (2019) The role of the nuclear lamina in cell migration: the connection with aging and metastasis, Biopolym. Cell, 35, 227-228, https://doi.org/10.7124/bc.0009F2.

    Article  Google Scholar 

  118. De Vos, W. H., Houben, F., Kamps, M., Malhas, A., Verheyen, F., et al. (2011) Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies, Hum. Mol. Genet., 20, 4175-4186, https://doi.org/10.1093/hmg/ddr344.

    Article  CAS  PubMed  Google Scholar 

  119. Hatch, E. M., and Hetzer, M. W. (2016) Nuclear envelope rupture is induced by actin-based nucleus confinement, J. Cell Biol., 215, 27-36, https://doi.org/10.1083/jcb.201603053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cho, S., Abbas, A., Irianto, J., Ivanovska, I. L., Xia, Y., et al. (2018) Progerin phosphorylation in interphase is lower and less mechanosensitive than lamin-A,C in iPS-derived mesenchymal stem cells, Nucleus, 9, 235-250, https://doi.org/10.1080/19491034.2018.1460185.

    Article  CAS  Google Scholar 

  121. Gordon, L. B., Rothman, F. G., López-Otín, C., and Misteli, T. (2014) Progeria: a paradigm for translational medicine, Cell, 156, 400-407, https://doi.org/10.1016/j.cell.2013.12.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pfeifer, C. R., Xia, Y., Zhu, K., Liu, D., Irianto, J., et al. (2018) Constricted migration increases DNA damage and independently represses cell cycle, Mol. Biol. Cell, 29, 1948-1962, https://doi.org/10.1091/mbc.E18-02-0079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Fernandez, P., Scaffidi, P., Markert, E., Lee, J.-H., Rane, S., and Misteli, T. (2014) Transformation resistance in a premature aging disorder identifies a tumor-protective function of BRD4, Cell Rep., 9, 248-260, https://doi.org/10.1016/j.celrep.2014.08.069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Clarke, S. G. (2007) HIV protease inhibitors and nuclear lamin processing: Getting the right bells and whistles, Proc. Natl. Acad. Sci. USA, 104, 13857-13858, https://doi.org/10.1073/pnas.0706529104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Coffinier, C., Hudon, S. E., Lee, R., Farber, E. A., Nobumori, C., et al. (2008) A Potent HIV protease inhibitor, darunavir, does not inhibit ZMPSTE24 or lead to an accumulation of farnesyl-prelamin A in cells, J. Biol. Chem., 283, 9797-9804, https://doi.org/10.1074/jbc.M709629200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu, Q., Kim, D. I., Syme, J., LuValle, P., Burke, B., and Roux, K. J. (2010) Dynamics of lamin-A processing following precursor accumulation, PLoS One, 5, e10874, https://doi.org/10.1371/journal.pone.0010874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to E. D. Ryumina for her technical help in preparation of the text.

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 19-315-90069) and by the Russian Science Foundation (project no. 17-15-01290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia L. Ovsiannikova.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovsiannikova, N.L., Lavrushkina, S.V., Ivanova, A.V. et al. Lamin A as a Determinant of Mechanical Properties of the Cell Nucleus in Health and Disease. Biochemistry Moscow 86, 1288–1300 (2021). https://doi.org/10.1134/S0006297921100102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921100102

Keywords

Navigation