Skip to main content
Log in

Cloning, Isolation, and Properties of a New Recombinant Tannase from the Aspergillus niger Fungus

  • PRODUCERS, BIOLOGY, SELECTION, AND GENE ENGINEERING
  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

A new recombinant Aspergillus niger tannase (tannin acyl hydrolase) produced by the Penicillium verruculosum fungus has been studied. A strain with a high level of extracellular tannase (TAN2) secretion (80% of the total extracellular protein) was obtained by cloning the tan2 gene (PDB Acc. no: MT828303) into the recipient strain. The tannase enzyme preparation degraded tannins in black tea extracts. TAN2 was isolated in homogeneous form using chromatographic methods; the enzyme had a high activity with respect to gallotannin (53 U/mg) and less activity against propyl gallate (4.7 U/mg). Homogeneous TAN2 showed temperature and pH optima of 45°C and 3.5, respectively. At a temperature of 50°C, TAN2 retained above 80% of its activity for 3 h; at 60°C about 75% of its activity for 90 min was preserved; at 70°C, the enzyme was completely inactivated within 10 min. Tannase was characterized by a high tolerance to NaCl, the activity with respect to gallotannin exceeded 50% of the initial value in solutions with a salt concentration of up to 5 M. The tannase activity was stimulated by Ca2+, Mg2+, Zn2+, Mn2+, Cu2+, Cd2+, and Pb2+ by 3–64%, and inhibited by 4‒65% in the presence of Co2+, Fe3+ and Fe2+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Aguilar, C.N. and Gutierrez-Sanchez, G., Review: sources, properties, applications and potential uses of tannin acyl hydrolase, Food Sci. Technol. Int., 2001, vol. 7, pp. 373–382. https://doi.org/10.1106/69M3-B30K-CF7Q-RJ5G

    Article  CAS  Google Scholar 

  2. Rajak, R.C. and Singh, A., Banerjee R. Biotransformation of hydrolysable tannin to ellagic acid by tannase from Aspergillus awamori, Biocatal. Biotransformation, 2017, vol. 35, pp. 27–34. https://doi.org/10.1080/10242422.2016.1278210

    Article  CAS  Google Scholar 

  3. García, D.E., Glasser, W.G., Pizzi, A., et al., Modification of condensed tannins: from polyphenol chemistry to materials engineering, New J. Chem., 2016, vol. 40, pp. 36–49. https://doi.org/10.1039/C5NJ02131F

    Article  CAS  Google Scholar 

  4. Sieniawska, E. and Baj, T., Tannins, in Pharmacognosy: Fundamentals, Applications and Strategies, Badal, S. and Delgoda, R., Eds., Amsterdam: Academic Press, 2017, p. 202.

    Google Scholar 

  5. Niho, N., Shibutani, M., Tamura, T., et al., Subchronic toxicity study of gallic acid by oral administration in F344 rats, Food Chem. Toxicol., 2001, vol. 39, pp. 1063–1070. https://doi.org/10.1016/S0278-6915(01)00054-0

    Article  CAS  Google Scholar 

  6. Bajpai, B. and Patil, S., A new approach to microbial production of gallic acid, Braz. J. Microbiol., 2008, vol. 39, pp. 708–711. https://doi.org/10.1590/S1517-838220080004000021

    Article  Google Scholar 

  7. Murugan, K. and Al-Sohaibani, S.A., Biocompatible removal of tannin and associated color from tannery effluent using the biomass and tannin acyl hydrolase (E.C.3.1.1.20) enzymes of mango industry solid waste isolate Aspergillus candidus MTTC 9628, Res. J. Microbiol., 2010, vol. 5, pp. 262–271. https://doi.org/10.3923/jm.2010.262.271

    Article  CAS  Google Scholar 

  8. Bhoite, R.N. and Murthy, P.S., Biodegradation of coffee pulp tannin by Penicillium verrucosum for production of tannase, statistical optimization and its application, Food Bioprod. Process., 2015, vol. 94, pp. 727–735. https://doi.org/10.1016/J.FBP.2014.10.007

    Article  CAS  Google Scholar 

  9. Thomas, R.L. and Murtagh, K., Characterization of tannase activity on tea extracts, J. Food Sci., 2006, vol. 50, pp. 1126–1129. https://doi.org/10.1111/j.1365-2621.1985.tb13026.x

    Article  Google Scholar 

  10. Nie, G., Zheng, Z., Gong, G., et al., Characterization of bioimprinted tannase and its kinetic and thermodynamics properties in synthesis of propyl gallate by trans-esterification in anhydrous medium, Appl. Biochem. Biotechnol., 2012, vol. 167, pp. 2305–2317. https://doi.org/10.1007/s12010-012-9775-8

    Article  CAS  Google Scholar 

  11. Belous, E., Maltabar, S.A., ans Galimova, A.Z., Composition for oral care, RF Patent no. 2416391, Byull. Izobret., 2011, no. 11.

  12. Dhiman, S., Mukherjee, G., and Singh, A.K., Recent trends and advancements in microbial tannase-catalyzed biotransformation of tannins: a review, Int. Microbiol., 2018, vol. 21, pp. 175–195. https://doi.org/10.1007/s10123-018-0027-9

    Article  CAS  Google Scholar 

  13. Sinitsyn, A.P., Sinitsyna, O.A., and Rozhkova, A.M., Production of industrially important enzymes based on the expression system of fungi Penicillium verruculosum, Biotekhnologiya, 2020, vol. 36, pp. 24–41. https://doi.org/10.31857/S0320972520060093

    Article  Google Scholar 

  14. Chekushina, A.V., Cellulolytic enzyme preparations based on fungi Trichoderma, Penicillium, and Myceliophtora with increased hydrolytic activity, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Moscow: Moscow State University, 2013.

  15. Aslanidis, C. and de Jong, P.J., Ligation-independent cloning of PCR products (LIC-PCR), Nucleic Acids Res., 1990, vol. 18, pp. 6069–6074. https://doi.org/10.1093/nar/18.20.6069

    Article  CAS  Google Scholar 

  16. Sambrook, J. and Russell, D.W., Preparation and transformation of competent E. coli using calcium chloride, Cold Spring Harb. Protoc., 2006, no. 1, article ID pdb.prot3932. https://doi.org/10.1101/pdb.prot3932

  17. Penttilä, M., Nevalainen, H., Rättö, M., et al., A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei, Gene, 1987, vol. 61, pp. 155–164. https://doi.org/10.1016/0378-1119(87)90110-7

    Article  Google Scholar 

  18. Sharma, S., Bhat, T.K., and Dawra, R.K., A spectrophotometric method for assay of tannase using Rhodanine, Anal. Biochem., 2000, vol. 279, pp. 85–89. https://doi.org/10.1006/ABIO.1999.4405

    Article  CAS  Google Scholar 

  19. Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, vol. 193, pp. 265–275.

    Article  CAS  Google Scholar 

  20. James, P., Proteome Research: Mass Spectrometry, Heidelberg: Springer Verlag, 2001.

    Book  Google Scholar 

  21. Hagerman, A.E. and Butler, L.G., Protein precipitation method for the quantitative determination of tannins, J. Agric. Food Chem., 1978, vol. 26, pp. 809–812. https://doi.org/10.1021/jf60218a027

    Article  CAS  Google Scholar 

  22. Batra, A. and Saxena, R.K., Potential tannase producers from the genera Aspergillus and Penicillium, Process Biochem., 2005, vol. 40, pp. 1553–1557. https://doi.org/10.1016/j.procbio.2004.03.003

    Article  CAS  Google Scholar 

  23. Iibuchi, S., Minoda, Y., and Yamada, K., Hydrolyzing pathway, substrate specificity and inhibition of tannin acyl hydrolase of Asp. oryzae No. 7, Agric. Biol. Chem., 1972, vol. 36, pp. 1553–1562. https://doi.org/10.1080/00021369.1972.10860437

    Article  CAS  Google Scholar 

  24. Korotkova, O.G., Rubtsova, E.A., Shashkov, I.A., et al., Comparative analysis of the composition and properties of feed enzyme preparations, Catal. Prom., 2018, vol. 18, pp. 72–78. https://doi.org/10.18412/1816-0387-2018-4-72-78

    Article  CAS  Google Scholar 

  25. Tomás-Cortázar, J., Plaza-Vinuesa, L., de las Rivas, B., et al., Identification of a highly active tannase enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum, Microb. Cell Fact., 2018, vol. 17, p. 33. https://doi.org/10.1186/s12934-018-0880-4

    Article  CAS  Google Scholar 

  26. Hatamoto, O., Watarai, T., Kikuchi, M., et al., Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae, Gene, 1996, vol. 175, pp. 215–221. https://doi.org/10.1016/0378-1119(96)00153-9

    Article  CAS  Google Scholar 

  27. Farias, G.M., Gorbea, C., Elkins, J.R., and Griffin, G.J., Purification, characterization, and substrate relationships of the tannase from Cryphonectria parasitica, Physiol. Mol. Plant Pathol., 1994, vol. 44, pp. 51–63. https://doi.org/10.1016/S0885-5765(05)80094-3

    Article  CAS  Google Scholar 

  28. Barthomeuf, C., Regerat, F., and Pourrat, H., Production, purification and characterization of a tannase from Aspergillus niger LCF 8, J. Ferment. Bioeng., 1994, vol. 77, pp. 320–323. https://doi.org/10.1016/0922-338X(94)90242-9

    Article  CAS  Google Scholar 

  29. Sharma, S., Bhat, T.K., and Dawra, R.K., Isolation, purification and properties of tannase from Aspergillus niger van Tieghem, World J. Microbiol. Biotechnol., 1999, vol. 15, pp. 673–677. https://doi.org/10.1023/A:1008939816281

    Article  CAS  Google Scholar 

  30. Ramírez-Coronel, M.A., Viniegra-González, G., Darvill, A., and Augur, C., A novel tannase from Aspergillus niger with β-glucosidase activity, Microbiology, 2003, vol. 149, pp. 2941–2946. https://doi.org/10.1099/mic.0.26346-0

    Article  CAS  Google Scholar 

  31. Gonçalves, H.B., Riul, A.J., Terenzi, H.F., et al., Extracellular tannase from Emericella nidulans showing hypertolerance to temperature and organic solvents, J. Mol. Catal. B Enzym., 2011, vol. 71, pp. 29–35. https://doi.org/10.1016/J.MOLCATB.2011.03.005

    Article  Google Scholar 

  32. Riul, A.J., Gonçalves, H.B., Jorge, J.A., and Guimarães, L.H.S., Characterization of a glucose- and solventtolerant extracellular tannase from Aspergillus phoenicis, J. Mol. Catal. B Enzym., 2013, vol. 85–86, pp. 126–133. https://doi.org/10.1016/J.MOLCATB.2012.09.001

    Article  Google Scholar 

  33. Aharwar, A. and Parihar, D.K., Talaromyces verruculosus tannase production, characterization and application in fruit juices detannification, Biocatal. Agric. Biotechnol., 2019, vol. 18, p. 101014. https://doi.org/10.1016/J.BCAB.2019.01.052

    Article  Google Scholar 

  34. Mondal, K.C., Banerjee, D., Banerjee, R., and Pati, B.R., Production and characterization of tannase from Bacillus cereus KBR9, J. Gen. Appl. Microbiol., 2001, vol. 47, pp. 263–267. https://doi.org/10.2323/jgam.47.263

    Article  CAS  Google Scholar 

  35. Banerjee, D., Mahapatra, M., and Bikas, P.R., Gallic acid production by submerged fermentation of Aspergillus aculeatus DBF9, J. Basic Microbiol., 2001, vol. 6, pp. 313–318. https://doi.org/10.3923/jm.2007.462.468

    Article  Google Scholar 

  36. Jana, A., Maity, C., Halder, S.K., et al., Structural characterization of thermostable, solvent tolerant, cytosafe tannase from Bacillus subtilis PAB2, Biochem. Eng. J., 2013, vol. 77, pp. 161–170. https://doi.org/10.1016/J.BEJ.2013.06.002

    Article  CAS  Google Scholar 

  37. Abdel-Naby, M.A., El-Tanash, A.B., and Sherief, A.D.A., Structural characterization, catalytic, kinetic and thermodynamic properties of Aspergillus oryzae tannase, Int. J. Biol. Macromol., 2016, vol. 92, pp. 803–811. https://doi.org/10.1016/J.IJBIOMAC.2016.06.098

    Article  CAS  Google Scholar 

  38. Shao, Y., Zhang, Y.-H., Zhang, F., et al., Thermostable tannase from Aspergillus Niger and its application in the enzymatic extraction of green tea, Molecules, 2020, vol. 25, p. 952. https://doi.org/10.3390/molecules25040952

    Article  CAS  Google Scholar 

  39. Kumar, C.S., Subramanian, R., and Rao, L.J., Application of enzymes in the production of RTD black tea beverages: a review, Crit. Rev. Food Sci. Nutr., 2013, vol. 53, pp. 180–197. https://doi.org/10.1080/10408398.2010.520098

    Article  CAS  Google Scholar 

  40. Madeira, J.V., Macedo, J.A., and Macedo, G.A., Detoxification of castor bean residues and the simultaneous production of tannase and phytase by solid-state fermentation using Paecilomyces variotii, Bioresour. Technol., 2011, vol. 102, pp. 7343–7348. https://doi.org/10.1016/J.BIORTECH.2011.04.099

    Article  CAS  Google Scholar 

  41. Jansman, A.J.M., Tannins in feedstuffs for simple-stomached animals, Nutr. Res. Rev., 1993, vol. 6, pp. 209–236. https://doi.org/10.1079/NRR19930013

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Osipov.

Ethics declarations

The authors declare that they have no conflicts of interest.

This article does not contain any studies involving animals performed by any of the authors.

This article does not contain any studies involving human participants performed by any of the authors outside the scope of their normal professional activities.

Additional information

Abbreviations: BSA, bovine serum albumin; CBH1, cellobiohydrolase 1; CBH2, cellobiohydrolase 2; CL, culture liquid; EP, enzyme preparation; MCC, microcrystalline cellulose; OD520, optical density at a wavelength of 520 nm; TAN2, spray-dried tannase preparation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipov, D.O., Matys, V.Y., Nemashkalov, V.A. et al. Cloning, Isolation, and Properties of a New Recombinant Tannase from the Aspergillus niger Fungus. Appl Biochem Microbiol 58, 958–965 (2022). https://doi.org/10.1134/S000368382209006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368382209006X

Keywords:

Navigation