Skip to main content
Log in

Cell Technologies in Experimental Therapy of Nerve Injuries (Problematic–Analytical Review)

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

This review is devoted to a topical problem of damaged nerve repair using stem cells. It presents the analysis the author’s data and literature information about the development of mesenchymal and neural stem cells under conditions of an altered microenvironment during transplantation into an injured nerve of laboratory animals. The regenerative potencies of the transplanted cells were compared and their influence on reparative processes in the recipient nerve was estimated. Identification of differences in the effect of stem cells of different genesis on the regenerating nerve suggested that the cell therapy has an effect on the processes of Wallerian degeneration at the early stages after a nerve injury. It was concluded that there is a need for in-depth fundamental studies of molecular regulation of Wallerian degeneration processes and their changes under the influence of exogenous stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Alekseeva, O.S., Gusel’nikova, V.V., Beznin, G.V., and Korzhevskii, D.E., Prospects for the application of neun nuclear protein as a marker of the functional state of nerve cells in vertebrates, J. Evol. Biochem. Phys., 2015, vol. 51, no. 5, pp. 357–369.

    Article  CAS  Google Scholar 

  2. Alvarez-Buylla, A. and Lim, D.A., For the long run: maintaining germinal niches in the adult brain, Neuron, 2004, vol. 41, no. 5, pp. 683–686.

    Article  CAS  PubMed  Google Scholar 

  3. Anderson, J., Patel, M., Forenzo, D., et al., A novel mouse model for the study of endogenous neural stem and progenitor cells after traumatic brain injury, Exp. Neurol., 2020, vol. 325, p. 113119. https://doi.org/10.1016/j.expneurol.2019.113119

    Article  CAS  PubMed  Google Scholar 

  4. Arsent’eva, E.V. and Polyakova, D.I., Neuroregeneration and neuroprotection: prospects for growth factors and other bioactive substances clinical application, Meditsinskii Al’yans, 2021, vol. 9, no. 1, pp. 82–90.

    Google Scholar 

  5. Arutyunyan, I.V., Fatkhudinov, T., El’chaninov, A.V., et al., Understanding mechanisms of the umbilical cord-derived multipotent mesenchymal stromal cell-mediated recovery enhancement in rat model of limb ischemia, Geny i Kletki, 2018, vol. 13, no. 1, pp. 82–89.

    Google Scholar 

  6. Asano, K., Nakano, T., Tokutake, K., et al., Muscle spindle reinnervation using transplanted embryonic dorsal root ganglion cells after peripheral nerve transection in rats, Cell Proliferation, 2019, vol. 52, no. 5, p. e12660. https://doi.org/10.1111/cpr.12660

    Article  PubMed  PubMed Central  Google Scholar 

  7. Baez-Jurado, E., Hidalgo-Lanussa, O., Barrera-Bailón, B., et al., Secretome of mesenchymal stem cells and its potential protective effects on brain pathologies, Mol. Neurobiol., 2019, vol. 56, no. 10, pp. 6902–6927. https://doi.org/10.1007/s12035-019-1570-x

    Article  CAS  PubMed  Google Scholar 

  8. Basalova, N., Sagaradze, G., Arbatskiy, M., et al., Secretome of mesenchymal stromal cells prevents myofibroblasts differentiation by transferring fibrosis-associated micrornas within extracellular vesicles, Cells, 2020, vol. 9, no. 5, p. 1272. https://doi.org/10.3390/cells9051272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bogov, A.A., Gallyamov, A.R., Danilov, V.I., et al., Comparative analysis of the use of cells of the stromal vascular fraction of adipose tissue and the gene therapy plasmid PBUD-VEGF165-FGF2 in experimental sciatic nerve autograft of a rat, Politravma, 2021, no. 2, pp. 103–108. https://doi.org/10.24412/1819-1495-2021-2-103-108

  10. Boldyreva, M. A., Bondar, I.V., Stafeev, I.S., et al., Plasmid-based gene therapy with hepatocyte growth factor stimulates peripheral nerve regeneration after traumatic injury, Biomed. Pharmacother., 2018, no. 101, pp. 682–690.

  11. Busuttil, F., Rahim, A.A., and Phillips, J.B., Combining gene and stem cell therapy for peripheral nerve tissue engineering, Stem Cells Dev., 2017, vol. 26, no. 4, pp. 231–238.

    Article  PubMed  Google Scholar 

  12. Chaplygina, A.V., Zhdanova, D.Yu., Kovalev, V.I., et al., Cell therapy as a way to correct disorders of neurogenesis in the adult brain in a model of Alzheimer’s disease, Rossiiskii Fiziologicheskii Zhurnal im. I.M. Sechenova, 2022, vol. 108, no. 1, pp. 59–84.

    Google Scholar 

  13. Chelyshev, Yu.A. and Bogov, A.A., Stimulation of peripheral nerve regeneration: current status, problems and perspectives, Nevrologicheskii Vestnik, 2008, vol. 40, no. 4, pp. 101–109.

    Google Scholar 

  14. Chinnadurai, R., Rajan, D., Qayed, M., et al., Potency analysis of mesenchymal stromal cells using a combinatorial assay matrix approach, Cell Rep., 2018, vol. 22, no. 9, pp. 2504–2517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cofano, F., Boido, M., Monticelli, M., et al., Mesenchymal stem cells for spinal cord injury: current options, limitations, and future of cell therapy, Int. J. Mol. Sci., 2019, vol. 20, p. 2698. https://doi.org/10.3390/ijms20112698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Gioia, R., Biella, F., Citterio, G., et al., Neural stem cell transplantation for neurodegenerative diseases, Int. J. Mol. Sci., 2020, vol. 21, no. 9, p. 3103. https://doi.org/10.3390/ijms21093103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Miguel, Z., Khoury, N., Betley, M.J., et al., Exercise plasma boosts memory and dampens brain inflammation via clusterin, Nature, 2021, vol. 600, no. 7889, pp. 494–499. https://doi.org/10.1038/s41586-021-04183-x

    Article  CAS  PubMed  Google Scholar 

  18. Dezawa, M., Muse cells provide the pluripotency of mesenchymal stem cells: direct contribution of Muse cells to tissue regeneration, Cell Transplant., 2016, vol. 25, no. 5, pp. 849–861. https://doi.org/10.3727/096368916X690881

    Article  PubMed  Google Scholar 

  19. Dezawa, M., Takahashi, I., Esaki, M., et al., Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells, Eur. J. Neurosci., 2001, vol. 14, pp. 1771–1776.

    Article  CAS  PubMed  Google Scholar 

  20. Dezawa, M., Niizuma, K., and Tominaga, T., Actualization of neural regenerative medicine by intravenous drip of donor-derived Muse cells, Brain Nerve, 2019, vol. 71, no. 8, pp. 895–900. https://doi.org/10.11477/mf.1416201372

    Article  CAS  PubMed  Google Scholar 

  21. Doinikov, B.S., Izbrannye trudy po neiromorfologii i nevropatologii (Selected Works on Neuromorphology and Neuropathology), Moscow: Medgiz, 1955.

  22. Ehmedah, A., Nedeljkovic, P., Dacic, S., et al., Vitamin B complex treatment attenuates local inflammation after peripheral nerve injury, Molecules, 2019, vol. 24, p. 4615. https://doi.org/10.3390/molecules24244615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ehmedah, A., Nedeljkovic, P., Dacic, S., et al., Effect of vitamin B complex treatment on macrophages to schwann cells association during neuroinflammation after peripheral nerve injury, Molecules, 2020, vol. 25, no. 22, p. 5426. https://doi.org/10.3390/molecules25225426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Erb, D.E., Mora, R.J., and Bunge, R.P., Reinnervation of adult rat gastrocnemius muscle by embryonic motoneurons transplanted into the axotomized tibial nerve, Exp. Neurol., 1993, vol. 124, pp. 372–376.

    Article  CAS  PubMed  Google Scholar 

  25. Finkel, Z., Esteban, F., Rodriguez, B., et al., Diversity of adult neural stem and progenitor cells in physiology and disease, Cells, 2021, vol. 10, p. 2045. https://doi.org/10.3390/cells10082045

    Article  PubMed  PubMed Central  Google Scholar 

  26. Franchi, S., Valsecchi, A.E., Borsani, E., et al., Intravenous neural stem cells abolish nociceptive hypersensitivity and trigger nerve regeneration in experimental neuropathy, Pain, 2012, vol. 153, pp. 850–861.

    Article  PubMed  Google Scholar 

  27. Gärtner, A., Pereira, T., Armada-da-Silva, P., et al., Effects of umbilical cord tissue mesenchymal stem cells (UCX®) on rat sciatic nerve regeneration after neurotmesis injuries, Journal of Stem Cells and Regenerative Medicine, 2014, vol. 10, no. 1, pp. 14–26. https://doi.org/10.46582/jsrm.1001004

  28. Gomazkov, O.A., Neurotrophins: the therapeutic potential and concept of minipeptides, Neurochem. J., 2012, vol. 6, no. 3, pp. 163–172.

    Article  CAS  Google Scholar 

  29. Grinsell, D. and Keating, C.P., Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies, BioMed. Res. Int., 2014, vol. 2014, p. 698256. https://doi.org/10.1155/2014/698256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gu, S., Shen, Y., Xu, W., et al., Application of fetal neural stem cells transplantation in delaying denervated muscle atrophy in rats with peripheral nerve injury, Microsurgery, 2010, vol. 30, pp. 266–274.

    Article  PubMed  Google Scholar 

  31. Haque, A., Banik, N.L., and Ray, S.K., Molecular alterations in glioblastoma: Potential targets for immunotherapy, Prog. Mol. Biol. Transl. Sci., 2011, vol. 98, pp. 187–234. https://doi.org/10.1016/B978-0-12-385506-0.00005-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Idrisova, K.F., Zeinalova, A.K., Masgutova, G.A., et al., Application of neurotrophic and proangiogenic factors as therapy after peripheral nervous system injury, Neural Regen. Res., 2022, vol. 17, no. 6, pp. 1240–1247. https://doi.org/10.4103/1673-5374.327329

    Article  CAS  PubMed  Google Scholar 

  33. Jessen, K.R. and Mirsky, R., The repair Schwann cell and its function in regenerating nerves, J. Physiol., 2016, vol. 594, no. 13, pp. 3521–3531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jonsson, S., Wiberg, R., McGrath, A.M., et al., Effect of delayed peripheral nerve repair on nerve regeneration, Schwann cell function and target muscle recovery, PLoS One, 2013, vol. 8, no. 2, p. e56484. https://doi.org/10.1371/journal.pone.0056484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kajitani, T., Endo, T., Iwabuchi, N., et al., Association of intravenous administration of human muse cells with deficit amelioration in a rat model of spinal cord injury, J. Neurosurg. Spine, 2021, vol. 34, no. 4, pp. 648–655. https://doi.org/10.3171/2020.7.SPINE20293

    Article  PubMed  Google Scholar 

  36. Kalinina, N.I., Sysoeva, V.Y., Rubina, K.A., et al., Mesenchymal stem cells in tissue growth and repair, Acta Naturae, 2011, vol. 3, no. 4, pp. 30–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kalinski, A.L., Yoon, C., Huffman, L.D., et al., Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key mechanism of nerve debridement, Elife, 2020, vol. 9, p. e60223. https://doi.org/10.7554/eLife.60223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kemp, S.W., Walsh, S.K., and Midha, R., Growth factor and stem cell enhanced conduits in peripheral nerve regeneration and repair, Neurol. Res., 2008, vol. 30, no. 10, pp. 1030–1038.

    Article  PubMed  Google Scholar 

  39. Kerns, J.M., Walter, J.S., Patetta, M.J., et al., Histological assessment of wallerian degeneration of the rat tibial nerve following crush and transection injuries, Journal of Reconstructive Microsurgery, 2021, vol. 37, no. 5, pp. 391–404.

    Article  PubMed  Google Scholar 

  40. Kiselevskii, M.V., Vlasenko, R.Ya., Stepanyan, N.G., et al., Mesenchymal bone marrow stem cell secretion: is it immunosuppressive or pro-inflammatory?, Kletochnye Tekhnologii v Biologii i Meditsine, 2021, no. 3, pp. 171–175.

  41. Kubiak, C.A., Grochmal, J., Kung, T.A., et al., Stem-cell-based therapies to enhance peripheral nerve regeneration, Muscle Nerve, 2020, vol. 61, no. 4, pp. 449–459. https://doi.org/10.1002/mus.26760

    Article  PubMed  Google Scholar 

  42. Kuroda, Y., Kitada, M., Wakao, S., et al., Unique multipotent cells in adult human mesenchymal cell populations, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, no. 19, pp. 8639–8643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kuroda, Y., Kitada, M., Wakao, S., and Dezawa, M., Bone marrow mesenchymal cells: how do they contribute to tissue repair and are they really stem cells?, Arch. Immunol. Ther. Exp., 2011, vol. 59, no. 5, pp. 369–378.

    Article  Google Scholar 

  44. Kuroda, Y., Wakao, S., Kitada, M., et al., Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells, Nat. Protoc., 2013, vol. 8, no. 7, pp. 1391–1415.

    Article  PubMed  Google Scholar 

  45. Lavorato, A., Raimondo, S., Boido, M., et al., Mesenchymal stem cell treatment perspectives in peripheral nerve regeneration: systematic review, Int. J. Mol. Sci., 2021, vol. 22, no. 2, p. 572. https://doi.org/10.3390/ijms22020572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, H.L., Oh, J., Yun, Y., et al., Vascular endothelial growth factor-expressing neural stem cell for the treatment of neuropathic pain, Neuroreport, 2015, vol. 26, no. 7, pp. 399–404. https://doi.org/10.1097/WNR.0000000000000359

    Article  CAS  PubMed  Google Scholar 

  47. Lee, H.L., Lee, H.Y., Yun, Y., et al., Hypoxia-specific, VEGF-expressing neural stem cell therapy for safe and effective treatment of neuropathic pain, J. Controlled Release, 2016, vol. 226, pp. 21–34. https://doi.org/10.1016/j.jconrel.2016.01.047

    Article  CAS  Google Scholar 

  48. Lovati, A.B., D’Arrigo, D., Odella, S., et al., Nerve repair using decellularized nerve grafts in rat models. A review of the literature, Front. Cell. Neurosci., 2018, vol. 12, p. 427. https://doi.org/10.3389/fncel.2018.00427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu, W., Li, J.P., Jiang, Z.D., et al., Effects of targeted muscle reinnervation on spinal cord motor neurons in rats following tibial nerve transection, Neural Regen. Res., 2022, vol. 17, no. 8, pp. 1827–1832.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Masgutov, R., Masgutova, G., Mullakhmetova, A., et al., Adipose-derived mesenchymal stem cells applied in fibrin glue stimulate peripheral nerve regeneration, Front. Med. (Lausanne), 2019, vol. 6, p. 68. https://doi.org/10.3389/fmed.2019.00068

    Article  PubMed  Google Scholar 

  51. Masgutov, R.F., Masgutova, G.A., Mukhametova, L.R., et al., Results of a comparative valuation of the efficiency of using the plasmid construct PBUD-VEGF165-FGF2 in models of autograft of the sciatic nerve defect and tubulation with the NeuraGen® collagen tube, Geny i Kletki, 2020, vol. 15, no. 4, pp. 61–65. https://doi.org/10.23868/202012010

    Article  Google Scholar 

  52. Mathot, F., Shin, A.Y., and van Wijnen, A.J., Targeted stimulation of MSCs in peripheral nerve repair, Gene, 2019, vol. 710, pp. 17–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McGonigal, R., Campbell, C.I., Barrie, J.A., et al., Schwann cell nodal membrane disruption triggers bystander axonal degeneration in a Guillain–Barré syndrome mouse model, J. Clin. Invest., 2022, vol. 132, no. 14, p. e158524. https://doi.org/10.1172/JCI158524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mietto, D.S., Kroner, A., Girolami, E.I., et al., Role of IL-10 in resolution of inflammation and functional recovery after peripheral nerve injury, J. Neurosci., 2015, vol. 35, no. 50, pp. 16431–16442. https://doi.org/10.1523/JNEUROSCI.2119-15.2015

    Article  CAS  Google Scholar 

  55. Morrison, T.J., Jackson, M.V., Cunningham, E.K., et al., Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer, Am. J. Respir. Crit Care Med., 2017, vol. 196, no. 10, pp. 1275–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mukhamedshina, Y., Shulman, I., Ogurcov, S., et al., Mesenchymal stem cell therapy for spinal cord contusion: a comparative study on small and large animal models, Biomolecules, 2019, vol. 9, no. 12, p. 811. https://doi.org/10.3390/biom9120811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Murray, P.J., Allen, J.E., Biswas, S.K., et al., Macrophage activation and polarization: nomenclature and experimental guidelines, Immunity, 2014, vol. 41, pp. 14–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Murray, L.M.A. and Krasnodembskaya, A.D., Concise review: intercellular communication via organelle transfer in the biology and therapeutic applications of stem cells, Stem Cells, 2019, vol. 37, no. 1, pp. 14–25. https://doi.org/10.1002/stem.2922

    Article  PubMed  Google Scholar 

  59. Namestnikova, D.D., Cherkashova, E.A., Sukhinich, K.K., et al., Combined cell therapy in the treatment of neurological disorders, Biomedicines, 2020, vol. 8, no. 12, p. 613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Niemi, J.P., Lindborg, J.A., and Zigmond, R.E., Detection of neutrophils in the sciatic nerve following peripheral nerve injury, Methods Mol. Biol., 2020, no. 2143, pp. 207–222.

  61. Nisht, A.Y., Fomin, N.F., and Orlov, V.P., Topographical, anatomical and neurosurgical aspects of “end-to-side” nerve repair, Vestnik Rosiiskoi Voenno-Meditsinskoi Akademii, 2021, no. 1 (73), pp. 121–128.

  62. Nozdrachev, A.D. and Chumasov, E.I., Perifericheskaya nervnaya sistema (Peripheral Nervous System), St. Petersburg: Nauka, 1999.

  63. Oh, J.S., An, S.S., Gwak, S.J., et al., Hypoxia-specific VEGF-expressing neural stem cells in spinal cord injury model, Neuroreport, 2012, vol. 23, no. 3, pp. 174–178. https://doi.org/10.1097/WNR.0b013e32834f4f3a

    Article  CAS  PubMed  Google Scholar 

  64. Pan, J., Zhao, M., Yi, X., et al., Acellular nerve grafts supplemented with induced pluripotent stem cell-derived exosomes promote peripheral nerve reconstruction and motor function recovery, Bioact. Mater., 2021, vol. 15, pp. 272–287.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Parker, B.J., Rhodes, D.I., O’Brien, C.M., et al., Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: a commercial perspective, Acta Biomater., 2021, vol. 135, pp. 64–86.

    Article  PubMed  Google Scholar 

  66. Payushina, O.V., Tsomartova, D.A., Chereshneva, E.V., et al., Menstrual blood-derived mesenchymal stromal cells as a resource for regenerative medicine, Biol. Bull. Rev., 2022, vol. 12, pp. 41–48. https://doi.org/10.1134/S2079086422010054

    Article  Google Scholar 

  67. Petrova, E., Isaeva, E., Kolos, E., and Korzhevskii, D., Allogeneic bone marrow mesenchymal stem cells in the epineurium and perineurium of the recipient rat, Biol. Commun., 2018a, vol. 63, no. 2, pp. 123–132.

    Article  Google Scholar 

  68. Petrova, E., Isaeva, E., Kolos, E., and Korzhevskii, D., Vascularization of the damaged nerve under the effect of experimental cell therapy, Bull. Exp. Biol. Med., 2018b, vol. 165, no. 1, pp. 161–165.

    Article  CAS  PubMed  Google Scholar 

  69. Petrova, E., Kolos, E., and Korzhevskii, D., Changes in the thickness of rat nerve sheaths after single subperineural administration of rat bone marrow mesenchymal stem cells, Bull. Exp. Biol. Med., 2021a, vol. 171, no. 4, pp. 547–552.

    Article  CAS  PubMed  Google Scholar 

  70. Petrova, E.S., The use of stem cells to stimulate regeneration of damaged nerve, Tsitologiya, 2012, no. 7, pp. 525–540.

  71. Petrova, E.S., Searching for means to stimulate injured nerve regeneration using novel cell technologies, Meditsinskii Akademicheskii Zhurnal, 2015, vol. 15, no. 4, pp. 7–19.

    Google Scholar 

  72. Petrova, E.S., Differentiation potential of mesenchymal stem cells and stimulation of nerve regeneration, Rus. J. Dev. Biol., 2018, vol. 49, no. 4, pp. 193–205.

    Article  Google Scholar 

  73. Petrova, E.S., Chumasov, E.I., and Otellin, V.A., Morphological assessment of growth capacity of the central nervous system axons in a peripheral nerve, Bull. Exp. Biol. Med., 1998, vol. 125, no. 2, pp. 205–208.

    Article  Google Scholar 

  74. Petrova, E.S. and Kolos, E.A., Nerve fiber regeneration in the rat sciatic nerve after injury and administration of mesenchymal stem cells, Neurosci. Behav. Physiol., 2021, vol. 51, no. 4, pp. 513–518.

    Article  CAS  Google Scholar 

  75. Petrova, E.S., Kolos, E.A., Isaeva, E.N., Transplantation of dissociated cells of the embryonic spinal cord and MSCs into the damaged rat nerve (comparative study), in Voprosy morfologii XXI veka. Vypusk 6 (Questions of Morphology of the 21st Century. Issue 6), Odintsov, I.A. and Kostyukevich, S.V., Eds., St. Petersburg: “Izdatel’stvo DEAN,” 2021b, pp. 127–130.

  76. Popova, N.K., Ilchibaeva, T.V., and Naumenko, V.S., Neurotrophic factors (BDNF and GDNF) and the serotonergic system of the brain, Biochemistry (Moscow), 2017, vol. 82, no. 3, pp. 308–317.

    Article  CAS  PubMed  Google Scholar 

  77. Pronina, E.A., Maslyakov, V.V., Stepanova, T.V., et al., Analysis of regenerationmechanismsin auto ransplantation, Rossiiskii Mediko-Biologicheskii Vestnik im. Akademika I.P. Pavlova, 2019, vol. 27, no. 3, pp. 393–406. https://doi.org/10.23888/PAVLOVJ2019273393-406

    Article  Google Scholar 

  78. Ramon y Cahal, S., Degeneration and Regeneration of the Nervous System, London: Oxford Univ. Press, Humphrey Milford, 1928, vols. 1–2.

    Google Scholar 

  79. Resch, A., Wolf, S., Mann, A., et al., Co-culturing human adipose derived stem cells and Schwann cells on spider silk—a new approach as prerequisite for enhanced nerve regeneration, Int. J. Mol. Sci., 2018, vol. 20, p. 71.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Revishchin, A.V., Pavlova, G.V., Okhotin, V.E., and Yakovleva, K.A., Kletochnaya terapiya pri neirodegenerativnykh zabolevaniyakh (Cell Therapy in Neurodegenerative Diseases), Moscow: Mos. Pedagog. Gos. Univ., 2017.

  81. Rosell, A. and Neukomm, L.J., Axon death signalling in Wallerian degeneration among species and in disease, Open Biol., 2019, vol. 9, p. 190118. https://doi.org/10.1098/rsob.190118

    Article  CAS  Google Scholar 

  82. Sanagi, T., Yabe, T., and Yamada, H., Gene transfer of PEDF attenuates ischemic brain damage in the rat middle cerebral artery occlusion model, J. Neurochem., 2008, vol. 106, no. 4, pp. 1841–1854. https://doi.org/10.1111/j.1471-4159.2008.05529.x

    Article  CAS  PubMed  Google Scholar 

  83. Sarker, M., Saman, N., McInnes, A.D., et al., Regeneration of peripheral nerves by nerve guidance conduits: influence of design, biopolymers, cells, growth factors, and physical stimuli, Prog. Neurobiol., 2018, vol. 171, pp. 125–150.

    Article  CAS  PubMed  Google Scholar 

  84. Sekiguchi, H., Ii, M., Jujo, K., et al., Estradiol promotes neural stem cell differentiation into endothelial lineage and angiogenesis in injured peripheral nerve, Angiogenesis, 2013, vol. 16, no. 1, pp. 45–58. https://doi.org/10.1007/s10456-012-9298-5

    Article  CAS  PubMed  Google Scholar 

  85. Shchanitsyn, I.N., Ivanov, A.N., Bazhanov, S.P., et al., Stimulation of peripheral nerve regeneration: Current status, problems and perspectives, Usp. Fiziol. Nauk, 2017, vol. 48, no. 3, pp. 92–112.

    Google Scholar 

  86. Shchedrenok, V.V., Gumanenko, E.K., Kir’yanova, V.V., et al., Principles of early rehabilitation of the neurotrauma, Vestnik Khirurgii im. I.I. Grekova, 2013, vol. 172, no. 5, pp. 51–55.

    CAS  Google Scholar 

  87. Siemionow, M. and Brzezicki, G., Chapter 8: Current techniques and concepts in peripheral nerve repair, Int. Rev. Neurobiol., 2009, vol. 87, pp. 141–172. https://doi.org/10.1016/S0074-7742(09)87008-6

    Article  CAS  PubMed  Google Scholar 

  88. Siemionow, M., Strojny, M.M., Kozlowska, K., et al., Application of human epineural conduit supported with human mesenchymal stem cells as a novel therapy for enhancement of nerve gap regeneration, Stem Cell Rev. Rep., 2022, vol. 18, no. 2, pp. 642–659. https://doi.org/10.1007/s12015-021-10301-z

    Article  CAS  PubMed  Google Scholar 

  89. Sotnikov, O.S., Funktsional’naya morfologiya zhivogo myakotnogo nervnogo volokna (Functional Morphology of the Living Medullated Nerve Fiber), Leningrad: Nauka, 1976.

  90. Stratton, J.A. and Shah, P.T., Macrophage polarization in nerve injury: Do Schwann cells play a role?, Neural Regener. Res., 2016, vol. 11, no. 1, pp. 53–57.

    Article  CAS  Google Scholar 

  91. Sukhinich, K.K., Dashinimaev, E.B., Vorotelyak, E.A., and Aleksandrova, M.A., Regenerative effects and development patterns of solid neural tissue grafts located in gelatin hydrogel conduit for treatment of peripheral nerve injury, Plast. Reconstr. Surg. Global Open, 2020a, vol. 8, no. 2, p. e2610. https://doi.org/10.1097/GOX.0000000000002610

    Article  Google Scholar 

  92. Sukhinich, K.K., Namestnikova, D.D., Gubskii, I.L., et al., Distribution and migration of human placental mesenchymal stromal cells in the brain of healthy rats after stereotaxic or intra-arterial transplantation, Bull. Exp. Biol. Med., 2020b, vol. 168, no. 4, pp. 542–551.

    Article  CAS  PubMed  Google Scholar 

  93. Sunderland, S., The anatomy and physiology of nerve injury, Muscle Nerve, 1990, vol. 13, no. 9, pp. 771–784. https://doi.org/10.1002/mus.880130903

    Article  CAS  PubMed  Google Scholar 

  94. Takeuchi, S., Tsuchiya, A., Iwasawa, T., et al., Small extracellular vesicles derived from interferon-γ pre-conditioned mesenchymal stromal cells effectively treat liver fibrosis, NPJ Regen. Med., 2021, vol. 6, no. 1, p. 19. https://doi.org/10.1038/s41536-021-00132-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Thomas, C.K., Erb, D.E., Grumbles, R.M., and Bunge, R.P., Embryonic cord transplants in peripheral nerve restore skeletal muscle function, J. Neurophysiol., 2000, vol. 84, no. 1, pp. 591–595. https://doi.org/10.1152/jn.2000.84.1.591

    Article  CAS  PubMed  Google Scholar 

  96. Tricaud, N. and Park, H.T., Wallerian demyelination: chronicle of a cellular cataclysm, Cell. Mol. Life Sci., 2017, vol. 74, no. 22, pp. 4049–4057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tuturov, A.O., Pyatin, V.F., and Sergeev, S.M., Prospects for development of technologies for restoration of extended nerve defects with use of conduits, Politravma, 2019, no. 2, pp. 95–101.

  98. Valentini, R.F., Sabatini, A.M., Dario, P., and Aebischer, P., Polymer electret guidance channels enhance peripheral nerve regeneration in mice, Brain Res., 1989, vol. 480, nos. 1–2, pp. 300–304. https://doi.org/10.1016/0006-8993(89)90196-0

    Article  CAS  PubMed  Google Scholar 

  99. Waller, A., New method for the study of the nervous system, London Journal of Medicine, 1852, vol. 4, no. 43, pp. 609–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang, C., Lu, C.F., Peng, J., et al., Roles of neural stem cells in the repair of peripheral nerve injury, Neural Regener. Res., 2017, vol. 12, pp. 2106–2112. https://doi.org/10.4103/1673-5374.221171

    Article  CAS  Google Scholar 

  101. Weiss, D.J., English, K., Krasnodembskaya, A., et al., The necrobiology of mesenchymal stromal cells affects therapeutic efficacy, Front. Immunol., 2019, vol. 10, p. 1228.https://doi.org/10.3389/fimmu.2019.01228

  102. Wong, K.M., Babetto, E., and Beirowski, B., Axon degeneration: make the Schwann cell great again, Neural Regen. Res., 2017, vol. 12, no. 4, pp. 518–524.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Xin, D., Li, T., Chu, X., et al., Mesenchymal stromal cell-derived extracellular vesicles modulate microglia/macrophage polarization and protect the brain against hypoxia-ischemic injury in neonatal mice by targeting delivery of miR-21a-5p, Acta Biomater., 2020, vol. 113, pp. 597–613. https://doi.org/10.1016/j.actbio.2020.06.037

    Article  CAS  PubMed  Google Scholar 

  104. Xu, Q., Zhang, M., Liu, J., and Li, W., Intrathecal transplantation of neural stem cells appears to alleviate neuropathic pain in rats through release of GDNF, Ann. Clin. Lab. Sci., 2013, vol. 43, pp. 154–162.

    CAS  PubMed  Google Scholar 

  105. Yamada, Y., Minatoguchi, S., Baba, S., et al., Human Muse cells reduce myocardial infarct size and improve cardiac function without causing arrythmias in a swine model of acute myocardial infarction, PLoS One, 2022, vol. 17, no. 3, p. e0265347. https://doi.org/10.1371/journal.pone.0265347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yarygin, K.N., Lupatov, A.Y., and Sukhikh, G.T., Modulation of immune responses by mesenchymal stromal cells, Bull. Exp. Biol. Med., 2016, vol. 161, no. 4, pp. 561–565.

    Article  CAS  PubMed  Google Scholar 

  107. Zigmond, R.E. and Echevarria, F.D., Macrophage biology in the peripheral nervous system after injury, Prog. Neurobiol., 2019, vol. 173, pp. 102–121. https://doi.org/10.1016/j.pneurobio.2018.12.001

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was state budget funded within the governmental assignment to the Institute of Experimental Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Petrova.

Ethics declarations

The author declares that she has no conflicts of interest.

This article does not contain any studies involving human participants or animals as objects of study.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrova, E.S. Cell Technologies in Experimental Therapy of Nerve Injuries (Problematic–Analytical Review). Biol Bull Rev 12 (Suppl 2), S195–S206 (2022). https://doi.org/10.1134/S2079086422080060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086422080060

Keywords:

Navigation