Skip to main content
Log in

Study on Wear Model and Adhesive Wear Mechanism of Brass under Boundary Lubrication

  • NEW SUBSTANCES, MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The tribological tests of brass and steel are carried out on an in-situ tribometer. The Stribeck curve illustrates that the roughness and the wear rate as a whole reflect the lubrication regimes. Under boundary lubrication, a mathematical model based on positive pressure and roughness is established. A good agreement between the measurement and the prediction is found. According to the analysis of worn surface morphology, the main wear mechanism of brass is adhesive wear under boundary lubrication, which results in relatively high values of tribological parameters. The oxides strengthening layer is hardly generated under boundary lubrication until the experiment enters the mixed lubrication (ML) and the hydrodynamic lubrication (HL) regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Panagopoulos, C.N., Georgiou, E.P., and Simeonidis, K., Tribol. Int., 2012, vol. 50, pp. 1–5.

    Article  CAS  Google Scholar 

  2. Perfilyev, V., Moshkovich, A., Lapsker, I., and Rapoport, L., Tribol. Int., 2010, vol. 43, pp. 1449–1456.

    Article  CAS  Google Scholar 

  3. Elleuch, K., Elleuch, R., Mnif, R., Fridrici, V., and Kapsa, P., Tribol. Int., 2006, vol. 39, pp. 290–296.

    Article  CAS  Google Scholar 

  4. Zhang, G., Wetzel, B., and Wang, Q., Tribol. Int., 2015, vol. 88, pp. 153–161.

    Article  CAS  Google Scholar 

  5. Jenson, A.D., Roy, S., and Sundararajan, S., Tribol. Int., 2018, vol. 118, pp. 1–10.

    Article  CAS  Google Scholar 

  6. Fukuda, K. and Morita, T., Wear, 2017, vols. 376–377, pp. 1528–1533.

    Article  Google Scholar 

  7. Sullivan, J.L., J. Phys. D: Appl. Phys., 1986, vol. 19, p. 1999.

    Article  CAS  Google Scholar 

  8. Bosman, R. and Schipper, D.J., Tribol. Lett., 2011, vol. 42, pp. 169–178.

    Article  CAS  Google Scholar 

  9. Hsu, S.M. and Gates, R.S., Tribol. Int., 2005, vol. 38, pp. 305–312.

    Article  CAS  Google Scholar 

  10. Studt, P., Tribol. Int., 1989, vol. 22, pp. 111–119.

    Article  CAS  Google Scholar 

  11. Gates, R.S., Jewett, K.L., and Hsu, S.M., ASLE Trans., 1989, vol. 32, pp. 423–430.

    CAS  Google Scholar 

  12. Belin, M., Martin, J.M., and Mansot, J.L., ASLE Trans., 1987, vol. 32, pp. 410–413.

    Google Scholar 

  13. Tonck, A., Kapsa, P., and Sabot, J., J. Tribol., 1986, vol. 108, pp. 117–122.

    Article  CAS  Google Scholar 

  14. Hsu, S.M. and Klaus, E.E., ASLE Trans., 1979, vol. 22, pp. 135–145.

    Article  CAS  Google Scholar 

  15. Stratmann, A., Hentschke, C., and Jacobs, G., Proc. World Tribology Congress 2013, Torino, September 8–13, 2013.

  16. Morina, A. and Neville, A., J. Phys. D: Appl. Phys., 2007, vol. 40, p. 5476.

    Article  CAS  Google Scholar 

  17. Stratmann, A., Jacobs, G., Hsu, C.-J., Gachot, C., and Burghardt, G., Tribol. Int., 2017, vol. 113, pp. 43–49.

    Article  CAS  Google Scholar 

  18. Korres, S. and Dienwiebel, M., Rev. Sci. Instrum., 2010, vol. 81, p. 1545.

    Article  Google Scholar 

  19. Nehl, E., Wear, 1986, vol. 107, pp. 329–341.

    Article  Google Scholar 

  20. Nehl, E., Wear, 1986, vol. 107, pp. 329–341.

    Article  Google Scholar 

  21. Korres, S., Feser, T., and Dienwiebel, M., Acta Mater., 2012, vol. 60. pp. 420–429.

    Article  CAS  Google Scholar 

  22. Bakoglidis, K.D., Nedelcu, I., Ivanov, I.G., Meeuwenoord, R., Schmidt, S., Janzén, E., et al., Tribol. Int., 2017, vol. 114, pp. 141–151.

    Article  CAS  Google Scholar 

  23. Moshkovich, A., Perfilyev, V., Bendikov, T., Lapsker, I., Cohen, H., and Rapoport, L., Acta Mater., 2010, vol. 58, pp. 4685–4692.

    Article  CAS  Google Scholar 

  24. Gelinck, E.R.M. and Schipper, D.J., Tribol. Int., 2000, vol. 33, pp. 175–181.

    Article  Google Scholar 

  25. Archard, J.F., J. Appl. Phys., 2004, vol. 24, pp. 981–988.

    Article  Google Scholar 

  26. Toledo, M.L.G.D., Freitas, M.A., Colosimo, E.A., and Gilardoni, G.L., Reliab. Eng. Syst. Saf., 2015, vol. 140, pp. 107–115.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Special thanks are extended to Prof. Martin Dienwiebel at the Karlsruhe Institute of Technology for their assistance with tribological experiments.

Funding

This work is supported by the National Natural Science Foundation of China (nos. 51601021, 51671037, 51441001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Liu or Jianzhong Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Yang, C., Zhou, J. et al. Study on Wear Model and Adhesive Wear Mechanism of Brass under Boundary Lubrication. Prot Met Phys Chem Surf 57, 367–373 (2021). https://doi.org/10.1134/S2070205121010147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205121010147

Keywords:

Navigation