Skip to main content
Log in

Activation of Endogenous Mesenchymal Stromal Cells as an Approach to Tissue Regeneration

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

Mesenchymal stromal cells (MSCs), which have a complex proregenerative effect on damaged tissues, are a promising resource for cell therapy for a wide range of diseases. However, transplantation of autologous or donor MSCs to a patient is associated with a number of problems, such as variability in cell properties depending on the source and cultivation conditions, a decrease in their therapeutic potential, and the likelihood of acquiring immunogenicity or tumorigenicity during expansion in vitro, as well as the invasiveness of the extraction procedure. One way to avoid these problems may be by having an effect on endogenous MSCs by stimulating their directed migration into tissue defects without the need for extraction from the body, reproduction in vitro, and reintroduction to the patient. This review considers approaches to activating the mobilization of MSCs from tissue niches and/or stimulating their migration to the target area, which can be considered as a safer and possibly more effective alternative to MSC transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Andrzejewska, A., Lukomska, B., and Janowski, M., Concise review: mesenchymal stem cells: from roots to boost, Stem Cells, 2019, vol. 37, p. 855. https://doi.org/10.1002/stem.3016

    Article  PubMed  Google Scholar 

  2. Askari, A.T., Unzek, S., Popovic, Z.B., Goldman, C.K., Forudi, F., Kiedrowski, M., Rovner, A., Ellis, S.G., Thomas, J.D., DiCorleto, P.E., Topol, E.J., and Penn, M.S., Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy, Lancet, 2003, vol. 362, p. 697. https://doi.org/10.1016/S0140-6736(03)14232-8

    Article  CAS  PubMed  Google Scholar 

  3. Balseanu, A.T., Buga, A.M., Catalin, B., Wagner, D.C., Boltze, J., Zagrean, A.M., Reymann, K., Schaebitz, W., and Popa-Wagner, A., Multimodal approaches for regenerative stroke therapies: combination of granulocyte colony-stimulating factor with bone marrow mesenchymal stem cells is not superior to G-CSF alone, Front. Aging Neurosci., 2014, vol. 23, p. 130. https://doi.org/10.3389/fnagi.2014.00130

    Article  Google Scholar 

  4. Bayo, J., Real, A., Fiore, E.J., Malvicini, M., Sganga, L., Bolontrade, M., Andriani, O., Bizama, C., Fresno, C., Podhajcer, O., Fernandez, E., Gidekel, M., Mazzolini, G.D., and García, M.G., IL-8, GRO and MCP-1 produced by hepatocellular carcinoma microenvironment determine the migratory capacity of human bone marrow-derived mesenchymal stromal cells without affecting tumor aggressiveness, Oncotarget, 2016, vol. 8, p. 80235. https://doi.org/10.18632/oncotarget.10288

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bradley, M.J., Vicente, D.A., Bograd, B.A., San-ders, E.M., Leonhardt, C.L., Elster, E.A., and Davis, T.A., Host responses to concurrent combined injuries in non-human primates, J. Inflamm. (London), 2017, vol. 14, p. 23. https://doi.org/10.1186/s12950-017-0170-7

    Article  CAS  PubMed Central  Google Scholar 

  6. Bui, K.C., Senadheera, D., Wang, X., Hendrickson, B., Friedlich, P., and Lutzko, C., Recovery of multipotent progenitors from the peripheral blood of patients requiring extracorporeal membrane oxygenation support, Am. J. Respir. Crit. Care Med., 2010, vol. 181, p. 226. https://doi.org/10.1164/rccm.200812-1901OC

    Article  PubMed  Google Scholar 

  7. Burks, S.R., Nagle, M.E., Bresler, M.N., Kim, S.J., Star, R.A., and Frank, J.A., Mesenchymal stromal cell potency to treat acute kidney injury increased by ultrasound-activated interferon-γ/interleukin-10 axis, J. Cell. Mol. Med., 2018, vol. 22, p. 6015. https://doi.org/10.1111/jcmm.13874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cai, X., Yang, F., Walboomers, X.F., Wang, Y., Jan-sen, J.A., van den Beucken, J.J.J.P., and Plachokova, A.S., Periodontal regeneration via chemoattractive constructs, J. Clin. Periodontol., 2018, vol. 45, p. 851. https://doi.org/10.1111/jcpe.12928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Calle, A., Barrajón-Masa, C., Gómez-Fidalgo, E., Martín-Lluch, M., Cruz-Vigo, P., Sánchez-Sánchez, R., and Ramírez, M.Á., Iberian pig mesenchymal stem/stromal cells from dermal skin, abdominal and subcutaneous adipose tissues, and peripheral blood: in vitro characterization and migratory properties in inflammation, Stem Cell Res. Ther., 2018, vol. 9, p. 178. https://doi.org/10.1186/s13287-018-0933-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, P., Tao, J., Zhu, S., Cai, Y., Mao, Q., Yu, D., Dai, J., and Ouyang, H., Radially oriented collagen scaffold with SDF-1 promotes osteochondral repair by facilitating cell homing, Biomaterials, 2015, vol. 39, p. 114. https://doi.org/10.1016/j.biomaterials.2014.10.049

    Article  CAS  PubMed  Google Scholar 

  11. Chen, Z., Ren, X., Ren, R., Wang, Y., and Shang, J., The combination of G-CSF and AMD3100 mobilizes bone marrow-derived stem cells to protect against cisplatin-induced acute kidney injury in mice, Stem Cell Res. Ther., 2021, vol. 12, p. 209. https://doi.org/10.1186/s13287-021-02268-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chuma, H., Mizuta, H., Kudo, S., Takagi, K., and Hiraki, Y., One day exposure to FGF-2 was sufficient for the regenerative repair of full-thickness defects of articular cartilage in rabbits, Osteoarthritis Cartilage, 2004, vol. 12, p. 834. https://doi.org/10.1016/j.joca.2004.07.003

    Article  CAS  PubMed  Google Scholar 

  13. Churchman, S.M., Jones, E.A., Roshdy, T., Cox, G., Boxall, S.A., McGonagle, D., and Giannoudis, P.V., Transient existence of circulating mesenchymal stem cells in the deep veins in humans following long bone intramedullary reaming, J. Clin. Med., 2020, vol. 9, p. 968. https://doi.org/10.3390/jcm9040968

    Article  PubMed  PubMed Central  Google Scholar 

  14. Deng, J., Zou, Z.M., Zhou, T.L., Su, Y.P., Ai, G.P., Wang, J.P., Xu, H., and Dong, S.W., Bone marrow mesenchymal stem cells can be mobilized into peripheral blood by G-CSF in vivo and integrate into traumatically injured cerebral tissue, Neurol. Sci., 2011, vol. 32, p. 641. https://doi.org/10.1007/s10072-011-0608-2

    Article  PubMed  Google Scholar 

  15. Deng, M., Mei, T., Hou, T., Luo, K., Luo, F., Yang, A., Yu, B., Pang, H., Dong, S., and Xu, J., TGFβ3 recruits endogenous mesenchymal stem cells to initiate bone regeneration, Stem Cell Res. Ther., 2017, vol. 8, p. 258. https://doi.org/10.1186/s13287-017-0693-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dhar, M., Neilsen, N., Beatty, K., Eaker, S., Adair, H., and Geiser, D., Equine peripheral blood-derived mesenchymal stem cells: isolation, identification, trilineage differentiation and effect of hyperbaric oxygen treatment, Equine Vet. J., 2012, vol. 44, p. 600. https://doi.org/10.1111/j.2042-3306.2011.00536.x

    Article  CAS  PubMed  Google Scholar 

  17. Dubon, M.J., Yu, J., Choi, S., and Park, K.S., Transforming growth factor β induces bone marrow mesenchymal stem cell migration via noncanonical signals and N-cadherin, J. Cell. Physiol., 2018, vol. 233, p. 201. https://doi.org/10.1002/jcp.25863

    Article  CAS  PubMed  Google Scholar 

  18. Dubon, M.J. and Park, K.S., The mechanisms of substance P-mediated migration of bone marrow-derived mesenchymal stem cell-like ST2 cells, Int. J. Mol. Med., 2016, vol. 37, p. 1105. https://doi.org/10.3892/ijmm.2016.2496

    Article  CAS  PubMed  Google Scholar 

  19. Dwyer, R.M., Potter-Beirne, S.M., Harrington, K.A., Lowery, A.J., Hennessy, E., Murphy, J.M., Barry, F.P., O’Brien, T., and Kerin, M.J., Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells, Clin. Cancer. Res., 2007, vol. 13, p. 5020. https://doi.org/10.1158/1078-0432.CCR-07-0731

    Article  CAS  PubMed  Google Scholar 

  20. Emamnejad, R., Sahraian, M., Shakiba, Y., Salehi, Z., Masoomi, A., Imani, D., Najafi, F., Laribi, B., Shirzad, H., and Izad, M., Circulating mesenchymal stem cells, stromal derived factor (SDF)-1 and IP-10 levels increased in clinically active multiple sclerosis patients but not in clinically stable patients treated with beta interferon, Mult. Scler. Relat. Disord., 2019, vol. 35, p. 233. https://doi.org/10.1016/j.msard.2019.08.013

    Article  PubMed  Google Scholar 

  21. Fan, W., Yuan, L., Li, J., Wang, Z., Chen, J., Guo, C., Mo, X., and Yan, Z., Injectable double-crosslinked hydrogels with kartogenin-conjugated polyurethane nano-particles and transforming growth factor β3 for in-situ cartilage regeneration, Mater. Sci. Eng. C Mater. Biol. Appl., 2020, vol. 110, p. 110705. https://doi.org/10.1016/j.msec.2020.110705

    Article  CAS  PubMed  Google Scholar 

  22. Fellous, T.G., Redpath, A.N., Fleischer, M.M., Gandhi, S., Hartner, S.E., Newton, M.D., François, M., Wong, S.P., Gowers, K.H.C., Fahs, A.M., Possley, D.R., Bonnet, D., Urquhart, P., Nicolaou, A., Baker, K.C., et al., Pharmacological tools to mobilise mesenchymal stromal cells into the blood promote bone formation after surgery, NPJ Regen. Med., 2020, vol. 5, p. 3. https://doi.org/10.1038/s41536-020-0088-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fujita, K., Kuge, K., Ozawa, N., Sahara, S., Zaiki, K., Nakaoji, K., Hamada, K., Takenaka, Y., Tanahashi, T., Tamai, K., Kaneda, Y., and Maeda, A., Cinnamtannin B-1 promotes migration of mesenchymal stem cells and accelerates wound healing in mice, PLoS One, 2015, vol. 10, p. e0144166. https://doi.org/10.1371/journal.pone.0144166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fujita, R., Tamai, K., Aikawa, E., Nimura, K., Ishino, S., Kikuchi, Y., and Kaneda, Y., Endogenous mesenchymal stromal cells in bone marrow are required to preserve muscle function in mdx mice, Stem Cells, 2015, vol. 33, p. 962. https://doi.org/10.1002/stem.1900

    Article  CAS  PubMed  Google Scholar 

  25. Furumoto, T., Ozawa, N., Inami, Y., Toyoshima, M., Fujita, K., Zaiki, K., Sahara, S., Akita, M., Kitamura, K., Nakaoji, K., Hamada, K., Tamai, K., Kaneda, Y., and Maeda, A., Mallotus philippinensis bark extracts promote preferential migration of mesenchymal stem cells and improve wound healing in mice, Phytomedicine, 2014, vol. 21, p. 247. https://doi.org/10.1016/j.phymed.2013.09.003

    Article  PubMed  Google Scholar 

  26. Garcia, N.P., de Leon, E.B., da Costa, A.G., Tarragô, A.M., Pimentel, J.P., Fraporti, L., de Araujo, F.F., Campos, F.M., Teixeira-Carvalho, A., Martins-Filho, O.A., and Malheiro, A., Kinetics of mesenchymal and hematopoietic stem cells mobilization by G-CSF and its impact on the cytokine microenvironment in primary cultures, Cell. Immunol., 2015, vol. 293, p. 1. https://doi.org/10.1016/j.cellimm.2014.09.006

    Article  CAS  PubMed  Google Scholar 

  27. Ge, T., Yu, Q., Liu, W., Cong, L., Liu, L., Wang, Y., Zhou, L., and Lin, D., Characterization of bone marrow-derived mesenchymal stem cells from dimethyloxallyl glycine-preconditioned mice: Evaluation of the feasibility of dimethyloxallyl glycine as a mobilization agent, Mol. Med. Rep., 2016, vol. 13, p. 3498. https://doi.org/10.3892/mmr.2016.4945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ghazanfari, T., Ghaffarpour, S., Kariminia, A., Salehi, E., Hashemi, S.M., Ardestani, S.K., Gohari Moghadam, K., Mirsharif, E.S., Dilmaghanian, R., Fadaei, A., and Faghihzadeh, S., Circulating mesenchymal stem cells in sulfur mustard-exposed patients with long-term pulmonary complications, Toxicol. Lett., 2019, vol. 312, p. 188. https://doi.org/10.1016/j.toxlet.2019.05.015

    Article  CAS  PubMed  Google Scholar 

  29. Gomez-Salazar, M., Gonzalez-Galofre, Z.N., Casamitjana, J., Crisan, M., James, A.W., and Péault, B., Five decades later, are mesenchymal stem cells still relevant?, Front. Bioeng. Biotechnol., 2020, vol. 8, p. 148. https://doi.org/10.3389/fbioe.2020.00148

    Article  PubMed  PubMed Central  Google Scholar 

  30. Guo, J., Zhang, H., Xiao, J., Wu, J., Ye, Y., Li, Z., Zou, Y., and Li, X., Monocyte chemotactic protein-1 promotes the myocardial homing of mesenchymal stem cells in dilated cardiomyopathy, Int. J. Mol. Sci., 2013 vol. 14, p. 8164. https://doi.org/10.3390/ijms14048164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hannoush, E.J., Sifri, Z.C., Elhassan, I.O., Mohr, A.M., Alzate, W.D., Offin, M., and Livingston, D.H., Impact of enhanced mobilization of bone marrow derived cells to site of injury, J. Trauma, vol. 71, p. 283. https://doi.org/10.1097/TA.0b013e318222f380

  32. Heino, T.J., Alm, J.J., Moritz, N., and Aro, H.T., Comparison of the osteogenic capacity of minipig and human bone marrow-derived mesenchymal stem cells, J. Orthop. Res., 2012, vol. 30, p. 1019. https://doi.org/10.1002/jor.22049

    Article  PubMed  Google Scholar 

  33. Hong, H.S., Lee, J., Lee, E., Kwon, Y.S., Lee, E., Ahn, W., Jiang, M.H., Kim, J.C., and Son, Y., A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells, Nat. Med., 2009, vol. 15, p. 425. https://doi.org/10.1038/nm.1909

    Article  CAS  PubMed  Google Scholar 

  34. Hong, H.S. and Son, Y., Substance P ameliorates collagen II-induced arthritis in mice via suppression of the inflammatory response, Biochem. Biophys. Res. Commun., 2014, vol. 453, p. 179. https://doi.org/10.1016/j.bbrc.2014.09.090

    Article  CAS  PubMed  Google Scholar 

  35. Hoogduijn, M.J., Verstegen, M.M., Engela, A.U., Korevaar, S.S., Roemeling-van Rhijn, M., Merino, A., Franquesa, M., de Jonge, J., Ijzermans, J.N., Weimar, W., Betjes, M.G., Baan, C.C., and van der Laan, L.J., No evidence for circulating mesenchymal stem cells in patients with organ injury, Stem Cells Dev., 2014, vol. 23, p. 2328. https://doi.org/10.1089/scd.2014.0269

    Article  PubMed  Google Scholar 

  36. Hu, C., Yong, X., Li, C., Lü, M., Liu, D., Chen, L., Hu, J., Teng, M., Zhang, D., Fan, Y., and Liang, G., CXCL12/CXCR4 axis promotes mesenchymal stem cell mobilization to burn wounds and contributes to wound repair, J. Surg. Res., 2013, vol. 183, p. 427. https://doi.org/10.1016/j.jss.2013.01.019

    Article  CAS  PubMed  Google Scholar 

  37. Iinuma, S., Aikawa, E., Tamai, K., Fujita, R., Kikuchi, Y., Chino, T., Kikuta, J., McGrath, J.A., Uitto, J., Ishii, M., Iizuka, H., and Kaneda, Y., Transplanted bone marrow-derived circulating PDGFRα+ cells restore type VII collagen in recessive dystrophic epidermolysis bullosa mouse skin graft, J. Immunol., 2015, vol. 194, p. 1996. https://doi.org/10.4049/jimmunol.1400914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ishikawa, M., Ito, H., Kitaori, T., Murata, K., Shibuya, H., Furu, M., Yoshitomi, H., Fujii, T., Yamamoto, K., and Matsuda, S., MCP/CCR2 signaling is essential for recruitment of mesenchymal progenitor cells during the early phase of fracture healing, PLoS One, 2014, vol. 9, p. e104954. https://doi.org/10.1371/journal.pone.0104954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Iso, Y., Yamaya, S., Sato, T., Poole, C.N., Isoyama, K., Mimura, M., Koba, S., Kobayashi, Y., Takeyama, Y., Spees, J.L, and Suzuki, H., Distinct mobilization of circulating CD271+ mesenchymal progenitors from hematopoietic progenitors during aging and after myocardial infarction, Stem Cells Transl. Med., 2012, vol. 1, p. 462. https://doi.org/10.5966/sctm.2011-0051

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jang, K.W., Tu, T.W., Rosenblatt, R.B., Burks, S.R., and Frank, J.A., MR-guided pulsed focused ultrasound improves mesenchymal stromal cell homing to the myocardium, J. Cell. Mol. Med., 2020, vol. 24, p. 13278. https://doi.org/10.1111/jcmm.15944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jin, W., Liang, X., Brooks, A., Futrega, K., Liu, X., Doran, M.R., Simpson, M.J., Roberts, M.S., and Wang, H., Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice, Peer J., 2018, vol. 6, p. e6072. https://doi.org/10.7717/peerj.6072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kamali, A., Oryan, A., Hosseini, S., Ghanian, M.H., Alizadeh, M., Baghaban Eslaminejad, M., and Baharvand, H., Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects, Mater. Sci. Eng. C Mater. Biol. Appl., 2019, vol. 101, p. 64. https://doi.org/10.1016/j.msec.2019.03.070

    Article  CAS  PubMed  Google Scholar 

  43. Khaldoyanidi, S., Directing stem cell homing, Cell Stem Cell, 2008, vol. 6, p. 198. https://doi.org/10.1016/j.stem.2008.02.012

    Article  CAS  Google Scholar 

  44. Kim, K., Lee, C.H., Kim, B.K., and Mao, J.J., Anatomically shaped tooth and periodontal regeneration by cell homing, J. Dent. Res., 2010, vol. 89, p. 842. https://doi.org/10.1177/0022034510370803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, S.J., Kim, J.E., Kim, S.H., Kim, S.J., Jeon, S.J., Kim, S.H., and Jung, Y., Therapeutic effects of neuropeptide substance P coupled with self-assembled peptide nanofibers on the progression of osteoarthritis in a rat model, Biomaterials, 2016, vol. 74, p. 119. https://doi.org/10.1016/j.biomaterials.2015.09.040

    Article  CAS  PubMed  Google Scholar 

  46. Kim, J., Kim, N.K., Park, S.R., and Choi, B.H., GM-CSF enhances mobilization of bone marrow mesenchymal stem cells via a CXCR4-medicated mechanism, Tiss. Eng. Regen. Med., 2018a, vol. 16, p. 59. https://doi.org/10.1007/s13770-018-0163-5

    Article  CAS  Google Scholar 

  47. Kim, J.E., Lee, J.H., Kim, S.H., and Jung, Y., Skin regeneration with self-assembled peptide hydrogels conjugated with substance P in a diabetic rat model, Tissue Eng. Part A, 2018b, vol. 24, p. 21. https://doi.org/10.1089/ten.TEA.2016.0517

    Article  CAS  PubMed  Google Scholar 

  48. Ko, I.K., Ju, Y.M., Chen, T., Atala, A., Yoo, J.J., and Lee, S.J., Combined systemic and local delivery of stem cell inducing/recruiting factors for in situ tissue regeneration, FASEB J., 2012, vol. 26, p. 158. https://doi.org/10.1096/fj.11-182998

    Article  CAS  PubMed  Google Scholar 

  49. Koerner, J., Nesic, D., Romero, J.D., Brehm, W., Mainil-Varlet, P., and Grogan, S., Equine peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal stem cells, Stem Cells, 2006, vol. 24, p. 1613. https://doi.org/10.1634/stemcells.2005-0264

    Article  CAS  PubMed  Google Scholar 

  50. Krstić, J., Obradović, H., Jauković, A., Okić-Đorđević, I., Trivanović, D., Kukolj, T., Mojsilović, S., Ilić, V., Santibañez, J.F., and Bugarski, D., Urokinase type plasminogen activator mediates Interleukin-17-induced peripheral blood mesenchymal stem cell motility and transendothelial migration, Biochim. Biophys. Acta, 2015, vol. 1853, p. 431. https://doi.org/10.1016/j.bbamcr.2014.11.025

    Article  CAS  PubMed  Google Scholar 

  51. Kumar, S. and Ponnazhagan, S., Mobilization of bone marrow mesenchymal stem cells in vivo augments bone healing in a mouse model of segmental bone defect, Bone, 2012, vol. 50, p. 1012. https://doi.org/10.1016/j.bone.2012.01.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kuznetsov, S.A., Mankani, M.H., Leet, A.I., Ziran, N., Gronthos, S., and Robey, P.G., Circulating connective tissue precursors: extreme rarity in humans and chondrogenic potential in guinea pigs, Stem Cells, 2007, vol. 25, p. 1830. https://doi.org/10.1634/stemcells.2007-0140

    Article  CAS  PubMed  Google Scholar 

  53. Lan, Y., Kodati, S., Lee, H.S., Omoto, M., Jin, Y., and Chauhan, S.K., Kinetics and function of mesenchymal stem cells in corneal injury, Invest. Ophthalmol. Vis. Sci., 2012, vol. 53, p. 3638. https://doi.org/10.1167/iovs.11-9311

    Article  CAS  PubMed  Google Scholar 

  54. Lang, H.M., Schnabel, L.V., Cassano, J.M., and Fortier, L.A., Effect of needle diameter on the viability of equine bone marrow derived mesenchymal stem cells, Vet. Surg., 2017, vol. 46, p. 731. https://doi.org/10.1111/vsu.12639

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lee, C.H., Cook, J.L., Mendelson, A., Moioli, E.K., Yao, H., and Mao, J.J., Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study, Lancet, 2010, vol. 376, p. 440. https://doi.org/10.1016/S0140-6736(10)60668-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Levy, O., Kuai, R., Siren, E.M.J., Bhere, D., Milton, Y., Nissar, N., De Biasio, M., Heinelt, M., Reeve, B., Abdi, R., Alturki, M., Fallatah, M., Almalik, A., Alhasan, A.H., Shah, K., et al., Shattering barriers toward clinically meaningful MSC therapies, Sci. Adv., 2020, vol. 6, p. eaba6884. https://doi.org/10.1126/sciadv.aba6884

  57. Li, Y., Dong, Y., Ran, Y., Zhang, Y., Wu, B., Xie, J., Cao, Y., Mo, M., Li, S., Deng, H., Hao, W., Yu, S., and Wu, Y., Three-dimensional cultured mesenchymal stem cells enhance repair of ischemic stroke through inhibition of microglia, Stem Cell Res. Ther., 2021, vol. 12, p. 358. https://doi.org/10.1186/s13287-021-02416-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin, W., Xu, L., Zwingenberger, S., Gibon, E., Goodman, S.B., and Li, G., Mesenchymal stem cells homing to improve bone healing, J. Orthop. Translat., 2017, vol. 9, p. 19. https://doi.org/10.1016/j.jot.2017.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lin, W., Xu, L., Lin, S., Shi, L., Wang, B., Pan, Q., Lee, W.Y.W., and Li, G., Characterisation of multipotent stem cells from human peripheral blood using an improved protocol, J. Orthop. Translat., 2019, vol. 19, p. 18. https://doi.org/10.1016/j.jot.2019.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu, L., Yu, Q., Lin, J., Lai, X., Cao, W., Du, K., Wang, Y., Wu, K., Hu, Y., Zhang, L., Xiao, H., Duan, Y., and Huang, H., Hypoxia-inducible factor-1α is essential for hypoxia-induced mesenchymal stem cell mobilization into the peripheral blood, Stem Cells Dev., 2011, vol. 20, p. 1961. https://doi.org/10.1089/scd.2010.0453

    Article  CAS  PubMed  Google Scholar 

  61. Liu, L., Yu, Q., Hu, K., Wang, B., Zhang, Y., Xu, Y., Fu, S., Yu, X., and Huang, H., Electro-acupuncture promotes endogenous multipotential mesenchymal stem cell mobilization into the peripheral blood, Cell. Physiol. Biochem., 2016, vol. 38, p. 1605. https://doi.org/10.1159/000443101

    Article  CAS  PubMed  Google Scholar 

  62. Liu, L., Yu, Q., Fu, S., Wang, B., Hu, K., Wang, L., Hu, Y., Xu, Y., Yu, X., and Huang, H., CXCR4 antagonist AMD3100 promotes mesenchymal stem cell mobilization in rats preconditioned with the hypoxia-mimicking agent cobalt chloride, Stem Cells Dev., 2018, vol. 27, p. 466. https://doi.org/10.1089/scd.2017.0191

    Article  CAS  PubMed  Google Scholar 

  63. Lorsung, R.M., Rosenblatt, R.B., Cohen, G., Frank, J.A., and Burks, S.R., Acoustic radiation or cavitation forces from therapeutic ultrasound generate prostaglandins and increase mesenchymal stromal cell homing to murine muscle, Front. Bioeng. Biotechnol., 2020, vol. 8, p. 870. https://doi.org/10.3389/fbioe.2020.00870

    Article  PubMed  PubMed Central  Google Scholar 

  64. Maeda, A., Recruitment of mesenchymal stem cells to damaged sites by plant-derived components, Front. Cell Dev. Biol., 2020, vol. 8, p. 437. https://doi.org/10.3389/fcell.2020.00437

    Article  PubMed  PubMed Central  Google Scholar 

  65. Maerz, T., Fleischer, M., Newton, M.D., Davidson, A., Salisbury, M., Altman, P., Kurdziel, M.D., Anderson, K., Bedi, A., and Baker, K.C., Acute mobilization and migration of bone marrow-derived stem cells following anterior cruciate ligament rupture, Osteoarthritis Cartilage, 2017, vol. 25, p. 1335. https://doi.org/10.1016/j.joca.2017.03.004

    Article  CAS  PubMed  Google Scholar 

  66. Mansilla, E., Marín, G.H., Drago, H., Sturla, F., Salas, E., Gardiner, C., Bossi, S., Lamonega, R., Guzmán, A., Nuñez, A., Gil, M.A., Piccinelli, G., Ibar, R., and Soratti, C., Bloodstream cells phenotypically identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine, Transplant. Proc., 2006, vol. 38, p. 967. https://doi.org/10.1016/j.transproceed.2006.02.053

    Article  CAS  PubMed  Google Scholar 

  67. Marketou, M.E., Parthenakis, F.I., Kalyva, A., Pontikoglou, C., Maragkoudakis, S., Kontaraki, J.E., Zacharis, E.A., Patrianakos, A., Chlouverakis, G., Papadaki, H.A., and Vardas, P.E., Circulating mesenchymal stem cells in patients with hypertrophic cardiomyopathy, Cardiovasc. Pathol., 2015, vol. 24, p. 149. https://doi.org/10.1016/j.carpath.2015.02.005

    Article  CAS  PubMed  Google Scholar 

  68. Meeson, R., Sanghani-Keri, A., Coathup, M., and Blunn, G., VEGF with AMD3100 endogenously mobilizes mesenchymal stem cells and improves fracture healing, J. Orthop. Res., 2019, vol. 37, p. 1294. https://doi.org/10.1002/jor.24164

    Article  CAS  PubMed  Google Scholar 

  69. Mi, L., Liu, H., Gao, Y., Miao, H., and Ruan, J., Injectable nanoparticles/hydrogels composite as sustained release system with stromal cell-derived factor-1α for calvarial bone regeneration, Int. J. Biol. Macromol., 2017, vol. 101, p. 341. https://doi.org/10.1016/j.ijbiomac.2017.03.098

    Article  CAS  PubMed  Google Scholar 

  70. Nam, D., Park, A., Dubon, M.J., Yu, J., Kim, W., Son, Y., and Park, K.S., Coordinated regulation of mesenchymal stem cell migration by various chemotactic stimuli, Int. J. Mol. Sci., 2020, vol. 21, p. 8561. https://doi.org/10.3390/ijms21228561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nitzsche, F., Müller, C., Lukomska, B., Jolkkonen, J., Deten, A., and Boltze, J., Concise review: MSC adhesion cascade-insights into homing and transendothelial migration, Stem Cells, 2017, vol. 35, p. 1446. https://doi.org/10.1002/stem.2614

    Article  PubMed  Google Scholar 

  72. Oh, E.J., Lee, H.W., Kalimuthu, S., Kim, T.J., Kim, H.M., Baek, S.H., Zhu, L., Oh, J.M., Son, S.H., Chung, H.Y., and Ahn, B.C., In vivo migration of mesenchymal stem cells to burn injury sites and their therapeutic effects in a living mouse model, J. Controlled Release, 2018, vol. 279, p. 79. https://doi.org/10.1016/j.jconrel.2018.04.020

    Article  CAS  Google Scholar 

  73. Pan, Q., Fouraschen, S.M., de Ruiter, P.E., Dinjens, W.N., Kwekkeboom, J., Tilanus, H.W., and van der Laan, L.J., Detection of spontaneous tumorigenic transformation during culture expansion of human mesenchymal stromal cells, Exp. Biol. Med. (Maywood), 2014, vol. 239, p. 105. https://doi.org/10.1177/1535370213506802

    Article  CAS  PubMed  Google Scholar 

  74. Patry, C., Doniga, T., Lenz, F., Viergutz, T., Weiss, C., Tönshoff, B., Kalenka, A., Yard, B., Krebs, J., Schaible, T., Beck, G., and Rafat, N., Increased mobilization of mesenchymal stem cells in patients with acute respiratory distress syndrome undergoing extracorporeal membrane oxygenation, PLoS One, 2020, vol. 15, p. e0227460. https://doi.org/10.1371/journal.pone.0227460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Patry, C., Stamm, D., Betzen, C., Tönshoff, B., Yard, B.A., Beck, G.C., and Rafat, N., CXCR-4 expression by circulating endothelial progenitor cells and SDF-1 serum levels are elevated in septic patients, J. Inflamm. (London), 2018, vol. 15, p. 10. https://doi.org/10.1186/s12950-018-0186-7

    Article  CAS  Google Scholar 

  76. Pavon, L.F., Sibov, T.T., de Souza, A.V., da Cruz, E.F., Malheiros, S.M.F., Cabral, F.R., de Souza, J.G., Boufleur, P., de Oliveira, D.M., de Toledo, S.R.C., Marti, L.C., Malheiros, J.M., Paiva, F.F., Tannús, A., de Oliveira, S.M., et al., Tropism of mesenchymal stem cell toward CD133+ stem cell of glioblastoma in vitro and promote tumor proliferation in vivo, Stem Cell Res. Ther., 2018, vol. 9, p. 310. https://doi.org/10.1186/s13287-018-1049-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pereira, C.L., Gonçalves, R.M., Peroglio, M., Pattap-pa, G., D’Este, M., Eglin, D., Barbosa, M.A., Alini, M., and Grad, S., The effect of hyaluronan-based delivery of stromal cell-derived factor-1 on the recruitment of MSCs in degenerating intervertebral discs, Biomaterials, 2014, vol. 35, p. 8144. https://doi.org/10.1016/j.biomaterials.2014.06.017

    Article  CAS  PubMed  Google Scholar 

  78. Popielarczyk, T.L., Huckle, W.R., and Barrett, J.G., Human bone marrow-derived mesenchymal stem cells home via the PI3K-Akt, MAPK, and Jak/Stat signaling pathways in response to platelet-derived growth factor, Stem Cells Dev., 2019, vol. 28, p. 1191. https://doi.org/10.1089/scd.2019.0003

    Article  CAS  PubMed  Google Scholar 

  79. Ries, C., Egea, V., Karow, M., Kolb, H., Jochum, M., and Neth, P., MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines, Blood, 2007, vol. 109, p. 4055. https://doi.org/10.1182/blood-2006-10-051060

    Article  CAS  PubMed  Google Scholar 

  80. Rochefort, G.Y., Delorme, B., Lopez, A., Hérault, O., Bonnet, P., Charbord, P., Eder, V., and Domenech, J., Multipotential mesenchymal stem cells are mobilized into peripheral blood by hypoxia, Stem Cells, 2006, vol. 24, p. 2202. https://doi.org/10.1634/stemcells.2006-0164

    Article  CAS  PubMed  Google Scholar 

  81. Sackstein, R., Merzaban, J.S., Cain, D.W., Dagia, N.M., Spencer, J.A., Lin, C.P., and Wohlgemuth, R., Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone, Nat. Med., 2008, vol. 14, p. 181. https://doi.org/10.1038/nm1703

    Article  CAS  PubMed  Google Scholar 

  82. Sasaki, T., Fukazawa, R., Ogawa, S., Kanno, S., Nitta, T., Ochi, M., and Shimizu, K., Stromal cell-derived factor-1alpha improves infarcted heart function through angiogenesis in mice, Pediatr. Int., 2007, vol. 49, p. 966. https://doi.org/10.1111/j.1442-200X.2007.02491.x

    Article  PubMed  Google Scholar 

  83. Sasaki, M., Abe, R., Fujita, Y., Ando, S., Inokuma, D., and Shimizu, H., Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type, J. Immunol., 2008, vol. 180, p. 2581. https://doi.org/10.4049/jimmunol.180.4.2581

    Article  CAS  PubMed  Google Scholar 

  84. Schenk, S., Mal, N., Finan, A., Zhang, M., Kiedrowski, M., Popovic, Z., McCarthy, P.M., and Penn, M.S., Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor, Stem Cells, 2007, vol. 25, p. 245. https://doi.org/10.1634/stemcells.2006-0293

    Article  CAS  PubMed  Google Scholar 

  85. Schmidt-Lucke, C., Escher, F., Van Linthout, S., Kühl, U., Miteva, K., Ringe, J., Zobel, T., Schultheiss, H.P., and Tschöpe, C., Cardiac migration of endogenous mesenchymal stromal cells in patients with inflammatory cardiomyopathy, Mediators Inflamm., 2015, vol. 2015, p. 308185. https://doi.org/10.1155/2015/308185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Selma, J.M., Das, A, Awojoodu, A.O., Wang, T., Kaushik, A.P., Cui, Q., Song, H., Ogle, M.E., Olingy, C.E., Pendleton, E.G., Tehrani, K.F., Mortensen, L.J., and Botchwey, E.A., Novel lipid signaling mediators for mesenchymal stem cell mobilization during bone repair, Cell. Mol. Bioeng., 2018, vol. 11, p. 241. https://doi.org/10.1007/s12195-018-0532-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shao, Z., Zhang, X., Pi, Y., Wang, X., Jia, Z., Zhu, J., Dai, L., Chen, W., Yin, L., Chen, H., Zhou, C., and Ao, Y., Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo, Biomaterials, 2012, vol. 33, p. 3375. https://doi.org/10.1016/j.biomaterials.2012.01.033

    Article  CAS  PubMed  Google Scholar 

  88. Sheyn, D., Shapiro, G., Tawackoli, W., Jun, D.S., Koh, Y., Kang, K.B., Su, S., Da, X., Ben-David, S., Bez, M., Yalon, E., Antebi, B., Avalos, P., Stern, T., Zelzer, E., et al., PTH induces systemically administered mesenchymal stem cells to migrate to and regenerate spine injuries, Mol. Ther., 2016, vol. 24, p. 318. https://doi.org/10.1038/mt.2015.211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Spaas, J.H., De Schauwer, C., Cornillie, P., Meyer, E., Van Soom, A., and Van de Walle, G.R., Culture and characterisation of equine peripheral blood mesenchymal stromal cells, Vet. J., 2013, vol. 195, p. 107. https://doi.org/10.1016/j.tvjl.2012.05.006

    Article  CAS  PubMed  Google Scholar 

  90. Struzyna, J., Pojda, Z., Braun, B., Chomicka, M., Sobiczewska, E., and Wrembel, J., Serum cytokine levels (IL-4, IL‑6, IL-8, G-CSF, GM-CSF) in burned patients, Burns, 1995, vol. 21, p. 437. https://doi.org/10.1016/0305-4179(95)00018-7

    Article  CAS  PubMed  Google Scholar 

  91. Tang, Y., Xia, H., Kang, L., Sun, Q., Su, Z., Hao, C., and Xue, Y., Effects of intermittent parathyroid hormone 1-34 administration on circulating mesenchymal stem cells in postmenopausal osteoporotic women, Med. Sc.i Monit., 2019, vol. 25, p. 259. https://doi.org/10.12659/MSM.913752

    Article  CAS  Google Scholar 

  92. Tatsumi, K., Ohashi, K., Matsubara, Y., Kohori, A., Ohno, T., Kakidachi, H., Horii, A., Kanegae, K., Utoh, R., Iwata, T., and Okano, T., Tissue factor triggers procoagulation in transplanted mesenchymal stem cells leading to thromboembolism, Biochem. Biophys. Res. Commun., 2013, vol. 431, p. 203. https://doi.org/10.1016/j.bbrc.2012.12.134

    Article  CAS  PubMed  Google Scholar 

  93. Teo, G.S., Ankrum, J.A., Martinelli, R., Boetto, S.E., Simms, K., Sciuto, T.E., Dvorak, A.M., Karp, J.M., and Carman, C.V., Mesenchymal stem cells transmigrate between and directly through tumor necrosis factor-α-activated endothelial cells via both leukocyte-like and novel mechanisms, Stem Cells, 2012, vol. 30, p. 2472. https://doi.org/10.1002/stem.1198

    Article  CAS  PubMed  Google Scholar 

  94. Uder, C., Brückner, S., Winkler, S., Tautenhahn, H.M., and Christ, B., Mammalian MSC from selected species: features and applications, Cytometry A, 2018, vol. 93, p. 32. https://doi.org/10.1002/cyto.a.23239

    Article  CAS  PubMed  Google Scholar 

  95. Ullah, M., Liu, D.D., and Thakor, A.S., Mesenchymal stromal cell homing: mechanisms and strategies for improvement, iScience, 2019, vol. 15, p. 421. https://doi.org/10.1016/j.isci.2019.05.004

  96. Vanden Berg-Foels, W.S., In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment, Tissue Eng. Part B Rev., 2014, vol. 20, p. 28. https://doi.org/10.1089/ten.TEB.2013.0100

    Article  PubMed  Google Scholar 

  97. Van der Velden, D.L., Houthuijzen, J.M., Rood-hart, J.M.L., van Werkhoven, E., and Voest, E.E., Detection of endogenously circulating mesenchymal stem cells in human cancer patients, Int. J. Cancer, 2018, vol. 143, p. 2516. https://doi.org/10.1002/ijc.31727

    Article  CAS  PubMed  Google Scholar 

  98. Vieira, C.P., McCarrel, T.M., and Grant, M.B., Novel methods to mobilize, isolate, and expand mesenchymal stem cells, Int. J. Mol. Sci., 2021, vol. 22, p. 5728. https://doi.org/10.3390/ijms22115728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wan, M., Li, C., Zhen, G., Jiao, K., He, W., Jia, X., Wang, W., Shi, C., Xing, Q., Chen, Y.F., Jan De Beur, S., Yu, B., and Cao, X., Injury-activated transforming growth factor beta controls mobilization of mesenchymal stem cells for tissue remodeling, Stem Cells, 2012, vol. 30, p. 2498. https://doi.org/10.1002/stem.1208

    Article  CAS  PubMed  Google Scholar 

  100. Wang, M., Chen, F., Wang, J., Chen, X., Liang, J., Yang, X., Zhu, X., Fan, Y., and Zhang, X., Calcium phosphate altered the cytokine secretion of macrophages and influenced the homing of mesenchymal stem cells, J. Mater. Chem. B, 2018, vol. 6, p. 4765. https://doi.org/10.1039/c8tb01201f

    Article  CAS  PubMed  Google Scholar 

  101. Wiegner, R., Rudhart, N.E., Barth, E., Gebhard, F., La-mpl, L., Huber-Lang, M.S., and Brenner, R.E., Mesenchymal stem cells in peripheral blood of severely injured patients, Eur. J. Trauma Emerg. Surg., 2018, vol. 44, p. 627. https://doi.org/10.1007/s00068-017-0849-8

    Article  CAS  PubMed  Google Scholar 

  102. Wu, C.C., Wang, I.F., Chiang, P.M., Wang, L.C., Shen, C.J., and Tsai, K.J., G-CSF-mobilized bone marrow mesenchymal stem cells replenish neural lineages in Alzheimer’s disease mice via CXCR4/SDF-1 chemotaxis, Mol. Neurobiol., 2017, vol. 54, p. 6198. https://doi.org/10.1007/s12035-016-0122-x

    Article  CAS  PubMed  Google Scholar 

  103. Yang, J.W., Zhang, Y.F., Wan, C.Y., Sun, Z.Y., Nie, S., Jian, S.J., Zhang, L., Song, G.T., and Chen, Z., Autophagy in SDF-1α-mediated DPSC migration and pulp regeneration, Biomaterials, 2015, vol. 44, p. 11. https://doi.org/10.1016/j.biomaterials.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  104. Zhang, D., Jiang, M., and Miao, D., Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse, PLoS One, 2011, vol. 6, p. e16789. https://doi.org/10.1371/journal.pone.0016789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhou, S.B., Wang, J., Chiang, C.A., Sheng, L.L., and Li, Q.F., Mechanical stretch upregulates SDF-1α in skin tissue and induces migration of circulating bone marrow-derived stem cells into the expanded skin, Stem Cells, 2013, vol. 31, p. 2703. https://doi.org/10.1002/stem.1479

    Article  CAS  PubMed  Google Scholar 

  106. Zhou, T., Yuan, Z., Weng, J., Pei, D., Du, X., He, C., and Lai, P., Challenges and advances in clinical applications of mesenchymal stromal cells, J. Hematol. Oncol., 2021, vol. 14, p. 24. https://doi.org/10.1186/s13045-021-01037-xa

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was carried out at the expense of the budgetary funds of Sechenov First Moscow State University, Ministry of Health of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Payushina.

Ethics declarations

The authors declare that they have no conflicts of interest. The authors did not conduct experiments involving animals or human beings.

Additional information

Abbreviations. CSF—colony stimulating factor; G-CSF and GM-CSF—granulocytic and granulocyte-macrophage CSF, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payushina, O.V., Tsomartova, D.A., Chereshneva, E.V. et al. Activation of Endogenous Mesenchymal Stromal Cells as an Approach to Tissue Regeneration. Cell Tiss. Biol. 17, 328–338 (2023). https://doi.org/10.1134/S1990519X23040065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X23040065

Keywords:

Navigation