Skip to main content
Log in

Effect of a Phosphorus-Silicon Containing Flame Retardant on the Activation Energy in Thermal Degradation of Thiol-ene Composites

  • Various Technological Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The thiol-ene (TE) polymerization systems have gained a lot of interests from industry and researchers in the last years. A phosphorus-silicon containing flame retardant DOPO-V was synthesized in this study, and the effect of DOPO-V on the flame retardancy of thiol ene was confirmed by cone calorimetry measurement. Moreover, the thermal stability of TE/DOPO-V (FRTE) composite was investigated by the thermogravimetric method under dynamic conditions (50–600°C) in nitrogen atmosphere. Moreover, kinetic parameters were calculated by the Kissinger and Flynn-Wall-Ozawa methods. It was observed that the activation energy for the FRTE degradation was slightly higher than that of pure TE. This was attributed to the fact that DOPO-V could further react with the TE matrix to form a complex and stable phosphorus-silicon containing char layer. Thus, the flame retardancy of FRTE/DOPO-V was higher than that of pure TE. By using both methods approximately equal values of activation energy were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Scheme 2.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Deker, C., Macromol. Rapid. Commun., 2002, vol. 23, pp. 1067–1093.

    Article  Google Scholar 

  2. Wang, X., Wang, X., and Song, L., Thermochim. Acta, 2013, vol. 568, no. 20, pp. 130–139.

    Article  CAS  Google Scholar 

  3. Bayramoglu, G., Kahraman, M.V., and Kayaman-Apohan, N., Prog. Org. Coat., 2006, vol. 57, pp. 50–55.

    Article  CAS  Google Scholar 

  4. Kwisnek, L., Heinz, S., and Wiggins, J.S., J. Membrane Sci., 2011, vol. 369, nos. 1, 2, pp. 429–436.

    Article  CAS  Google Scholar 

  5. Yu, B., Wang, X., and Xing, W., Chem. Eng., J., 2013, vol. 228, no. 28, pp. 318–326.

    Article  CAS  Google Scholar 

  6. Magenau, A.J.D., Chan, J.W., and Hoyle, C.E., Polym. Chem., 2010, vol. 1, no. 6, pp. 831–833.

    Article  CAS  Google Scholar 

  7. Shin, J., Nazarenko, S., and Phillips, J.P., Polymer, 2009, vol. 50, no. 26, pp. 6281–6286.

    Article  CAS  Google Scholar 

  8. Hoyle, C.E., and Bowman, C.N., Angew. Chem. Int. Ed., 2010, vol. 49, no. 9, pp. 1540–1573.

    Article  CAS  Google Scholar 

  9. Kwisnek, L., Nazarenko S. and Hoyle, C.E., Macromolecules, 2009, vol. 42, no. 18, pp. 7031–7041.

    Article  CAS  Google Scholar 

  10. Sparks, B.J., Kuchera, T.J., and Jungman, M.J., J. Mater. Chem., 2012, vol. 22, pp. 3817–3824.

    Article  CAS  Google Scholar 

  11. Çakmakçı, E., Mülazim, Y., and Kahraman, M.V., React. Funct. Polym., 2011, vol. 71, no. 1, pp. 36–41.

    Article  Google Scholar 

  12. Çakmakçı, E., Mülazim, Y., and Kahraman, M.V., Prog. Org. Coat., 2012, vol. 75, nos. 1, 2, pp. 28–32.

    Article  Google Scholar 

  13. Gawłowski, A., Fabia, J., and Graczyk, T., J. Therm. Anal. Calorim., 2016, vol. 125, no. 3, pp. 1–8.

    Article  Google Scholar 

  14. Vasiljević, J., Jerman, I., and Jakša, G., Cellulose, 2015, vol. 22, no. 3, pp. 1893–1910.

    Article  Google Scholar 

  15. Shi, Y. and Wang, G., Appl. Surf. Sci., 2016, vol. 385, pp. 453–463.

    Article  CAS  Google Scholar 

  16. Chao, P., Li, Y., and Gu, X., Polym. Chem., 2015, vol. 6, no. 15, pp. 2977–2985.

    Article  CAS  Google Scholar 

  17. Wu, C.S., Liu, Y.L. and Chiu, Y.S., Polymer, 2002, vol. 43, pp. 4277–4284.

    Article  CAS  Google Scholar 

  18. Zhang, L., Wang, Y., and Liu, Q., J. Therm. Anal. Calorim., 2016, vol. 123, no. 2, pp. 1–8.

    Article  CAS  Google Scholar 

  19. Kang, N.J., Du, Z.J., and Li, H.Q., Polym. Adv. Technol., 2012, vol. 23, pp. 1329–1334.

    Article  CAS  Google Scholar 

  20. Hsiue, G.H., Liu, Y.L., and Tsiao, J., J. Appl. Polym. Sci., 2015, vol. 78, no. 1, pp. 1–7.

    Article  Google Scholar 

  21. Qian, X.D., Pan, H.F., and Xing, X.Y., Ind. Eng. Chem. Res., 2012, vol. 51, pp. 85–94.

    Article  CAS  Google Scholar 

  22. Kissinger, H.E., Anal. Chem., 1957, vol. 29, no. 11, pp. 1702–1706.

    Article  CAS  Google Scholar 

  23. Flynn, J.H., J. Polym. Sci. Polym. Lett., 1966, 4, no. 5, pp. 323–328.

    Article  Google Scholar 

  24. Flynn, J.H., J. Polym. Sci. Polym. Lett., 1967, 5, no. 2, pp. 191–196.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank the National Natural Science Foundation of China (51703099), Natural Science Foundation of Zhejiang Province (LQ13E030002), Ningbo Natural Science Foundation (2019A610032) and Chongben Foundation for financial support. This work was also supported by Shanghai Key Laboratory of Multiphase Materials Chemical Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangbo Wang.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Bao, X., Wu, F. et al. Effect of a Phosphorus-Silicon Containing Flame Retardant on the Activation Energy in Thermal Degradation of Thiol-ene Composites. Russ J Appl Chem 94, 1002–1008 (2021). https://doi.org/10.1134/S1070427221070193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221070193

Keywords:

Navigation