Skip to main content
Log in

Study of the thermal decomposition and flame-retardant mechanism of sulfonated polyoxadiazole fibers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Various proportions of 4,4′-oxybisbenzoic acid (OBBA) were incorporated to obtain the spinning solution of sulfonated polyoxadiazole (SPOD) copolymer through copolymerization in oleum. And the sulfonated fibers were prepared from the solution by using wet spinning approaches. The chemical structures of the fibers were characterized using Fourier transform infrared spectroscopy (FTIR) and elemental analyzer. The results indicated that sulfo groups were successfully introduced into the macromolecular chain. And the flame retardancy of the SPOD fibers was evaluated by limiting oxygen index, UL-94 and microscale combustion calorimeter tests, showing that flame-retardant properties could be significantly enhanced. And the thermal decomposition and flame-retardant mechanism were studied through various analytical methods. And thermogravimetric (TG) analyzer and scanning electron microscope results showed that the incorporation of OBBA would help fibers form more compact carbon residue. X-ray photoelectron spectroscopy and TG-FTIR results revealed that sulfur element increased carbon residue rate in the condensed phase and some converted into SO2 in the gas phase. Py-GC/MS results showed that thermal decomposition happened at oxadiazole rings and the introduction of OBBA did not alter the decomposition mechanism of POD essentially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

References

  1. Wu TY, Sheu RB, Chen Y. Synthesis and optically acid-sensory and electrochemical properties of novel polyoxadiazole derivatives. Macromolecules. 2004;37:725–33.

    Article  CAS  Google Scholar 

  2. Udayakumar D, Adhikari AV. Synthesis and characterization of fluorescent poly(oxadiazole)s containing 3, 4-dialkoxythiophenes. Opt Mater. 2007;29:1710–8.

    Article  CAS  Google Scholar 

  3. Ipate AM, Hamciuc C, Homocianu M, Musteata VE, Nicolescu A, Bruma M, Belomoina N. Highly fluorinated poly (1,3,4-oxadiazole-ether)s. structural, optical and dielectric characteristics. J Polym Res. 2015;22:1–17.

    Article  CAS  Google Scholar 

  4. Yasujima H, Murakami M, Yoshimura S. Electrical and thermal properties of new pyrographite films based on a condensation polymer, polyoxadiazole. Appl Phys Lett. 1986;49:499–501.

    Article  CAS  Google Scholar 

  5. Brown PA, Chan JW, Cobb MW, Williams SR. Preparation of sulfonated naphthalene polyoxadiazoles polymers. US Patent Application 20130338335; 2013.

  6. Harmer MA, Williams SR, Cobb MW. Insulating material containing poly (phenylene-1,3,4-oxadiazole). US Patent Application 20140184371; 2014.

  7. Shioya M, Shinotani K, Takaku A. Carbonization behavior of polyoxadiazole fibers and films. J Mater Sci. 1999;34:6015–25.

    Article  CAS  Google Scholar 

  8. Frazer AH, Sweeny W, Wallenberger FT. Poly(1,3,4-oxadiazoles): a new class of polymers by cyclodehydration of polyhydrazides. J Polym Sci Part A. 1964;2:1157–69.

    CAS  Google Scholar 

  9. Iwakura Y, Uno K, Hara S. Poly-1,3,4-oxadiazoles. I. Polyphenylene-1,3,4-oxadiazoles. J Polym Sci Part A. 1965;3:45–54.

    CAS  Google Scholar 

  10. Schulz B, Bruma M, Brehmer L. Aromatic Poly(1,3,4-Oxadiazole)s as advanced materials. Adv Mater. 1997;9:601–13.

    Article  CAS  Google Scholar 

  11. Bova VG, Mikhajlova MP, Sugak VN, Tikhonov IV, Makarova RA, Kuznetsov VA, Durakovskij AP, Kharchenko EF. Fire-resistant fabric. RU Patent 2211263; 2003.

  12. Nauchno V. Werkwijze voor het bereiden van oxadiazolverbindingen, werkwijze voor het vervaardigen van vezels en zo gevormde vezels. NL Patent 7502905; 1975.

  13. Schiff KL, Füner AV, Strehl P, Schübel-Hopf U, Ebbinghaus D, Pat.-Anwälte, 8000 München. Polyarylen-1,3,4-oxadiazole, Verfahren zur Herstellung derselben und Verfahren zur Herstellung von Polyoxadiazolfasern auf deren Basis. DE Patent 2408426; 1974.

  14. Cobb MW, Marchione AA, Mcminn JH, Williams SR. Preparation of sulfonated polyoxadiazole polymers. US Patent Application 20130217854; 2013.

  15. Cobb MW, Williams SR, Zhu R. Flame resistant spun staple yarns made from blends of fibers derived from sulfonated polyoxadiazole polymers. US Patent Application 20130210306; 2013.

  16. Gomes D, Roeder J, Ponce ML, Nunes SP. Single-step synthesis of sulfonated polyoxadiazoles and their use as proton conducting membranes. J Power Sources. 2008;175:49–59.

    Article  CAS  Google Scholar 

  17. Hamciuc C, Hamciuc E, Bruma M, Klapper M, Pakula T, Demeter A. New aromatic polyethers containing phenylquinoxaline and 1,3,4-oxadiazole rings. Polymer. 2001;42:5955–61.

    Article  CAS  Google Scholar 

  18. Yang YY, Kong WB, Wang YC, Cai XF. Synthesis of tris (phenoxy) trifluorocyclotriphosphazenes and study of its effects on the flammable, thermal, optical, and mechanical properties of bisphenol-A polycarbonate[J]. J Therm Anal Calorim. 2015;122:805–16.

    Article  CAS  Google Scholar 

  19. Hu S, Song L, Pan HF, Hu Y. Effect of a novel chitosan-based flame retardant on thermal and flammability properties of polyvinyl alcohol. J Therm Anal Calorim. 2013;112:859–64.

    Article  CAS  Google Scholar 

  20. Ellzey KA, Ranganathan T, Zilberman J, Coughlin EB, Farris RJ, Emrick T. Deoxybenzoin-based polyarylates as halogen-free fire-resistant polymers. Macromolecules. 2006;39:3553–8.

    Article  CAS  Google Scholar 

  21. Wang DY, Song YP, Lin L, Wang XL, Wang YZ. A novel phosphorus-containing poly (lactic acid) toward its flame retardation. Polymer. 2011;52:233–8.

    Article  CAS  Google Scholar 

  22. Hu WZ, Zhan J, Hong NN, Hull TR, Stec AA, Song L, Wang J, Hu Y. Flame retardant polystyrene copolymers: preparation, thermal properties, and fire toxicities. Polym Adv Technol. 2014;25:631–7.

    Article  CAS  Google Scholar 

  23. Perepelkin KE, Malan’ina OB, Basok MO, Makarova RA, Oprits ZG. Thermal degradation of thermostable aromatic fibres in air and nitrogen medium. Fibre Chem. 2005;37:196–8.

    Article  CAS  Google Scholar 

  24. Qi YX, Wu WH, Han LJ, Qu HQ, Han X, Wang AQ, Xu JZ. Using TG-FTIR and XPS to understand thermal degradation and flame-retardant mechanism of flexible poly (vinyl chloride) filled with metallic ferrites. J Therm Anal Calorim. 2016;123:1263–71.

    Article  CAS  Google Scholar 

  25. Cheng CH, Lehmann J, Thies JE, Burton SD, Engelhard MH. Oxidation of black carbon by biotic and abiotic processes. Org Geochem. 2006;37:1477–88.

    Article  CAS  Google Scholar 

  26. Xie ZW, Wang LP, Wang XF, Huang L, Lu Y, Yan JC. Influence of high temperature annealing on the structure, hardness and tribological properties of diamond-like carbon and TiAlSiCN nanocomposite coatings. Appl Surf Sci. 2011;258:1206–11.

    Article  CAS  Google Scholar 

  27. Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater. 1999;11:771–8.

    Article  CAS  Google Scholar 

  28. Geng DS, Yang SL, Zhang Y, Yang JL, Liu J, Li RY, Sham TK, Sun XL, Ye SY, Knights S. Nitrogen doping effects on the structure of graphene. Appl Surf Sci. 2011;257:9193–8.

    Article  CAS  Google Scholar 

  29. Snis A, Matar SF. Electronic density of states, 1s core-level shifts, and core ionization energies of graphite, diamond, C3N4 phases, and graphitic C11N4. Phys Rev B. 1999;60:10855–63.

    Article  CAS  Google Scholar 

  30. Kozlowski C, Sherwood PMA. X-ray photoelectron-spectroscopic studies of carbon-fibre surfaces. Part 5: The effect of pH on surface oxidation. J Chem Soc Farad Trans 1 1985;81:2745–56.

  31. Peña JM, Allen NS, Edge M, Liauw CM, Valange B. Studies of synergism between carbon black and stabilisers in LDPE photodegradation. Polym Degrad Stabil. 2001;72:259–70.

    Article  Google Scholar 

  32. Zhang SW, Zeng MY, Li JX, Li J, Xu JZ, Wang XK. Porous magnetic carbon sheets from biomass as an adsorbent for the fast removal of organic pollutants from aqueous solution. J Mater Chem A. 2014;2:4391–7.

    Article  CAS  Google Scholar 

  33. Liu FJ, Sun J, Sun Q, Zhu LF, Wang L, Meng XJ, Qi CZ, Xiao FS. High-temperature synthesis of magnetically active and SO3H-functionalized ordered mesoporous carbon with good catalytic performance. Catal Today. 2012;186:115–20.

    Article  CAS  Google Scholar 

  34. Beamson G, Briggs D. High resolution XPS of organic polymers. The scienta ESCA300 database. Chichester: Wiley; 1992.

  35. Dong CH, Lu Z, Zhu P, Zhang FJ, Zhang X. Combustion behaviors of cotton fabrics treated by a novel guanidyl- and phosphorus-containing polysiloxane flame retardant. J Therm Anal Calorim. 2015;119:349–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the device support from State Key Laboratory of Polymer Materials and Engineering and every researcher’s helps and efforts in completing the research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengqing Liu or Jianjun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Li, Z., Zhou, W. et al. Study of the thermal decomposition and flame-retardant mechanism of sulfonated polyoxadiazole fibers. J Therm Anal Calorim 126, 1301–1311 (2016). https://doi.org/10.1007/s10973-016-5752-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5752-8

Keywords

Navigation