Skip to main content
Log in

Bacterial Community Characterization and Microbial Respiration of Selected Arable Soils of Ethiopia

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Soil microbial communities are considered a prominent soil fertility component since they highly influence soil processes. Despite the current challenges of soil fertility in Ethiopia, the biological properties of soils have been rarely incorporated into soil management decisions and research. The present study describes the bacterial community structure, pattern of soil microbial respiration (SMR), and their relationship with soil physicochemical properties in selected arable soils from four sites, with Luvisols, Cambisols, Vertisols, and Nitisols in the Tigray Regional State of Ethiopia. We employed amplicon sequencing and basal respiration methods to investigate the bacterial community structure and microbial respiration rate, respectively. SMR was higher in the Nitisol samples with a high amount of P2O5, soil organic carbon (SOC), and exchangeable Mg2+. Amplicon sequencing results (400 bp/OTU reads) revealed that the bacterial community was dominated by Actinobacteria, Chloroflexi, and Proteobacteria phyla. The highest ratio of Actinobacteria was found in Vertisol, while that of Chloroflexi and Proteobacteria was detected in Luvisol and Nitisol, respectively. Among the Alphaproteobacteria, order Rhizobiales (including Rhizobiaceae, Beijerinckiaceae, Xanthobacteraceae, Devosiaceae family) was the most abundant nitrogen-fixing bacteria in the soil samples. From the known P-mobilizing and Indole Acetic Acid (IAA) bacteria, members of Bacillus and Pseudomonas were found in low abundance (<1%). Overall, this study highlighted that P2O5, SOC, and Mg2+ probably influenced the variations of bacterial community structure and SMR. The relatively low abundance of important plant growth promoting bacteria (PGPB) in the investigated sites suggests the need for appropriate soil management practices for better crop yield. We recognized that this study was preliminary research, and much work still needs to be done to get a comprehensive view of the agrobacterial community structure and SMR of soils in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. Ali, A. Esayas, and S. Beyene, “Characterizing soils of Delbo Wegene watershed, Wolaita Zone, Southern Ethiopia for planning appropriate land management,” J. Soil Sci. Environ. Manage. 1 (8), 184–199 (2010). https://doi.org/10.5897/JSSEM.9000018

    Article  Google Scholar 

  2. A. Deressa, M. Yli-Halla, M. Mohamed, and L. Wogi, “Soil classification of humid Western Ethiopia: A transect study along a toposequence in Didessa watershed,” Catena 163, 184–195 (2018). https://doi.org/10.1016/j.catena.2017.12.020

    Article  Google Scholar 

  3. A. Klindworth, E. Pruesse, T. Schweer, J. Peplies, C. Quast, F. O. Horn, and M. Glöckner, “Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies,” Nucleic Acids Res. 41 (1), 1–11 (2013). https://doi.org/10.1093/nar/gks808

    Article  Google Scholar 

  4. Plant Growth Promoting Rhizobacteria for Agricultural Sustainability: From Theory to Practices, Ed. by A. Kumar and V. S. Meena (Springer-Verlag, New York, 2019), pp. 978–981. https://doi.org/10.1007/978-981-13-7553-8

  5. Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Agron. Monogr. no. 9.2, Ed. by A. L. Page, R. H. Miller, and D. R. Keene (America Society of Agronomy, Soil Science Society of America, Madison, WI, 1982), pp. 591–592.

    Google Scholar 

  6. A. Mehlich, Determination of P, Ca, Mg, K, Na and NH 4 (Department of Agriculture, Raleigh, NC, 1953), pp. 1–53.

    Google Scholar 

  7. A. Richter, D. O. Huallacháin, E. Doyle, N. Clipson, J. P. van Leeuwen, G. Heuvelink, and R. E. Creamer, “Linking diagnostic features to soil microbial biomass and respiration in agricultural grassland soil: a large-scale study in Ireland,” Eur. J. Soil Sci. 69 (3), 414–428 (2018). https://doi.org/10.1111/ejss.12551

    Article  Google Scholar 

  8. A. Schöler, S. Jacquiod, G. Vestergaard, S. Schulz, and M. Schloter, “Analysis of soil microbial communities based on amplicon sequencing of marker genes,” Biol. Fertil. Soils 53, 485–489 (2017). https://doi.org/10.1007/s00vc4-017-1205-1

    Article  Google Scholar 

  9. A. Sugiyama, Y. Ueda, T. Zushi, H. Takase, and K. Yazaki, “Changes in the bacterial community of soybean rhizospheres during growth in the field,” PLoS One 9 (6), e100709 (2014). https://doi.org/10.1371/journal.pone.0100709

    Article  Google Scholar 

  10. A. Walkley and I. A. Black, “An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method,” Soil Sci. 37 (1), 29–38 (1934).

    Article  Google Scholar 

  11. A. A. Aserse, L. A. Räsänen, F. Aseffa, A. Hailemariam, and K. Lindström, “Diversity of sporadic symbionts and nonsymbiotic endophytic bacteria isolated from nodules of woody, shrub, and food legumes in Ethiopia,” Appl. Microbiol. Biotechnol. 97, 10117–10134 (2013). https://doi.org/10.1007/s00253-013-5248-4

    Article  Google Scholar 

  12. A. A. Ivanova, A. D. Zhelezova, T. I. Chernov, and S. N. Dedysh, “Linking ecology and systematics of acidobacteria: distinct habitat preferences of the Acidobacteria and Blastocatellia in tundra soils,” PLoS One 15 (3), e0230157 (2020). https://doi.org/10.1371/journal.pone.0230157

    Article  Google Scholar 

  13. A. Hailemariam, “The effect of phosphate solubilizing fungus on the growth and yield of tef (Eragrostis tef) in phosphorous fixing soils,” in Proceedings of the Workshop on the 3rd Cycle Local Research Grant, Ethiopian Science & Technology Research Report (Addis Ababa, 1993), pp. 12–14.

  14. B. Gebremedhin, Atsbi Wemberta Pilot Learning Site Diagnosis, Program Design and Atlas (Nairobi, 2004).

    Google Scholar 

  15. B. J. Tindall, R. Rosselló-Móra, H. J. Busse, W. Ludwig, and P. Kämpfer, “Notes on the characterization of prokaryote strains for taxonomic purposes,” Int. J. Syst. Evol. Microbiol. 60 (1), 249–266 (2010). https://doi.org/10.1099/ijs.0.016949-0

    Article  Google Scholar 

  16. C. L. Lauber, M. Hamady, R. Knight, and N. Fierer, “Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale,” Appl. Environ. Microbiol. 75 (15), 5111–5120 (2009). https://doi.org/10.1128/AEM.00335-09

    Article  Google Scholar 

  17. C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza, J. Peplies, and F. O. Glöckner, “The SILVA ribosomal RNA gene database project: improved data processing and web-based tools,” Nucleic Acids Res. 41 (1), 590–596 (2012). https://doi.org/10.1093/nar/gks1219

    Article  Google Scholar 

  18. E. Högfors-Rönnholm, S. Christel, S. Engblom, and M. Dopson, “Indirect DNA extraction method suitable for acidic soil with high clay content,” MethodsX 5, 136–140 (2018). https://doi.org/10.1016/j.mex.2018.02.005

    Article  Google Scholar 

  19. F. Cheng, P. Peng, J. Zhao, C. Yuan, Y. Zhong, C. Cheng, S. Cui, and S. Zhang, “Soil microbial biomass, basal respiration and enzyme activity of main forest types in the Qinling Mountains,” PLoS One 8 (6), e67353 (2013). https://doi.org/10.1371/journal.pone.0067353

    Article  Google Scholar 

  20. F. Elias, D. Woyessa, and D. Muleta, “Phosphate solubilization potential of rhizosphere fungi isolated from plants in Jimma Zone, Southwest Ethiopia,” Int. J. Microbiol. 2016, 5472601 (2016). https://doi.org/10.1155/2016/5472601

    Article  Google Scholar 

  21. F. Révész, P.A. Figueroa-Gonzalez, A. J. Probst, B. Kriszt, S. Banerjee, S. Szoboszlay, G. Maróti, and A. Táncsics, “Microaerobic conditions caused the overwhelming dominance of Acinetobacter spp. and the marginalization of Rhodococcus spp. in diesel fuel/crude oil mixture-amended enrichment cultures,” Arch. Microbiol. 202 (2), 329–342 (2020). https://doi.org/10.1007/s00203-019-01749-2

    Article  Google Scholar 

  22. Guidelines for Soil Description, 4th ed. (UN Food and Agriculture Organization, Rome, 2006). ISBN 92-5-105521-1

  23. G. Brhane, and K. Mekonen, “Estimating soil loss using Universal Soil Loss Equation (USLE) for soil conservation planning at Medego watershed, Northern Ethiopia,” J. Am. Sci. 5, 58–69 (2009).

    Google Scholar 

  24. G. Agegnehu, A. Ghizaw, and W. Sinebo, “Crop productivity and land-use efficiency of a teff/faba bean mixed cropping system in a tropical highland environment,” Expl. Agric. 42 (4), 495 (2006). https://doi.org/10.1017/S0014479706003863

    Article  Google Scholar 

  25. H. Egnér, H. Riehem, and W. Domingo, “Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden II, Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung,” Kungl. Lantbrukshögsk. 26, 199–215 (1960).

    Google Scholar 

  26. Talaj-és Agrokémiai Vizsgálati Módszerkönyv, Vol. 2: A Talajok Fizikaikémiai és Kémiai Vizsgálati Módszerei, Ed. by I. Buzás (Mezőgazdasági Kiadó, Budapest, 1988), pp. 90–92, 96-98, 106–117, 175–177.

  27. Talaj-és Agrokémiai Vizsgálati Módszerkönyv, Vol. 1: A Talaj Fizikai, Vízgazdálkodási és Ásványtani Vizsgálata, Ed. by I. Buzás (Mezőgazdasági Kiadó, Budapest, 1993), pp. 19, 37–41, 63.

    Google Scholar 

  28. ISO 16072:2002: Soil Quality—Laboratory Methods for Determination of Microbial Soil Respiration (International Organization for Standardization, Geneva, 2002).

  29. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

  30. J. Aislabie and J. R. Deslippe, “Soil microbes and their contribution to soil services,” in Ecosystem Services in New Zealand: Conditions and Trends, Ed. by J. R. Dymond (Manaaki Whenua, Lincoln, 2013), pp. 143–161.

    Google Scholar 

  31. J. G. B. Leenaars, E. Eyasu, H. Wösten, M. R. González, B. Kempen, A. Ashenafi, and F. Brouwer, Major Soil-Landscape Resources of the Cascape Intervention Woredas, Ethiopia: Soil Information in Support to Scaling Op of Evidence-Based Best Practices in Agricultural Production (with Dataset) CASCAPE Working Paper Series no. OT_CP_2016_1 (Wageningen, 2016).

  32. J. Hofman, L. Dušek, J. Klánová, J. Bezchlebová, and I. Holoubek, “Monitoring microbial biomass and respiration in different soils from the Czech Republic—a summary of results,” Environ. Int. 30 (1), 19–30 (2004). https://doi.org/10.1016/S0160-4120(03)00142-9

    Article  Google Scholar 

  33. J. J. Kozich, S. L. Westcott, N. T. Baxter, S. K. Highlander, and P. D. Schloss, “Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform,” Appl. Environ. Microbiol. 79 (17), 5112–5120 (2013). https://doi.org/10.1128/AEM.01043-13

    Article  Google Scholar 

  34. J. M. Craine, C. Morrow, and N. Fierer, “Microbial nitrogen limitation increases decomposition,” Ecology 88 (8), 2105–2113 (2007). https://doi.org/10.1890/06-1847.1

    Article  Google Scholar 

  35. J. P. van Leeuwen, I. Djukic, J. Bloem, T. Lehtinen, L. Hemerik, P. C. de Ruiter, and G. J. Lair, “Effects of land use on soil microbial biomass, activity and community structure at different soil depths in the Danube floodplain,” Eur. J. Soil Biol. 79, 14–20 (2017). https://doi.org/10.1016/j.ejsobi.2017.02.001

    Article  Google Scholar 

  36. J. Rousk, E. Bååth, P. C. Brookes, C. L. Lauber, C. Lozupone, J. G. Caporaso, R. Knight, and N. Fierer, “Soil bacterial and fungal communities across a pH gradient in an arable soil,” ISME J. 4 (10), 1340 (2010). https://doi.org/10.1038/ismej.2010.58

    Article  Google Scholar 

  37. K. H. Habtemichial, B. B. Singh, and J. B. Aune, “Wheat response to N2 fixed by faba bean (Vicia faba L.) as affected by sulfur fertilization and rhizobial inoculation in semi-arid Northern Ethiopia,” J. Plant Nutr. Soil Sci. 170, 412–418 (2007). https://doi.org/10.1002/jpln.200625006

    Article  Google Scholar 

  38. L. Albuquerque, L. França, F. A. Rainey, P. Schumann, M. F. Nobre, and M. S. da Costa, “Gaiellaoculta gen. nov., sp. nov., a novel representative of a deep branching phylogenetic lineage within the class Actinobacteria and proposal of Gaiellaceae fam. nov. and Gaiellales ord. nov,” Syst. Appl. Microbiol. 34, 595–559 (2011). https://doi.org/10.1016/j.syapm.2011.07.001

    Article  Google Scholar 

  39. L. Liu, T. Zhang, F. S. Gilliam, P. Gundersen, W. Zhang, H. Chen, and J. Mo, “Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest,” PLoS One 8 (4), e61188 (2013). https://doi.org/10.1371/journal.pone.0061188

    Article  Google Scholar 

  40. M. A. Gorbacheva, N. V. Melnikova, V. R. Chechetkin, Y. V. Kravatsky, and N. A. Tchurikov, “DNA sequencing and metagenomics of cultivated and uncultivated chernozems in Russia,” Geoderma Reg. 14, e00180 (2018). https://doi.org/10.1016/j.geodrs.2018.e00180

    Article  Google Scholar 

  41. M. Ebrahimi, M. R. Sarikhani, A. A. S. Sinegani, A. Ahmadi, and S. Keesstra, “Estimating the soil respiration under different land uses using artificial neural network and linear regression models,”. Catena 174, 371–382 (2019). https://doi.org/10.1016/j.catena.2018.11.035

    Article  Google Scholar 

  42. M. Lulu, B. Lemma, and A. Melese, “Soil organic carbon and nutrients in smallholding land uses in southern Ethiopia,” J. Plant Nutr. Soil Sci. 183 (1), 69–79 (2019). https://doi.org/10.1002/jpln.201900243

    Article  Google Scholar 

  43. M. M. E. Andrea, T. E. A. Carolina, V. G. Anders, and R. G. Laura, “Relationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, Colombia,” Soil Environ. 36 (2), 174–181 (2017). https://doi.org/10.25252/SE/17/51202

    Article  Google Scholar 

  44. M. Rutgers, A. J. Schouten, J. Bloem, N. Van Eekeren, R. G. M. De Goede, G. A. J. M. Jagersop Akkerhuis, A. van der Wal, C. Mulder, L. Brussaard, and A. M. Breure, “Biological measurements in a nationwide soil monitoring network,” Eur. J. Soil Sci. 60 (5), 820–832 (2009). https://doi.org/10.1111/j.1365-2389.2009.01163.x

    Article  Google Scholar 

  45. M. Tufa, A. Melese, and W. Tena, “Effects of land use types on selected soil physical and chemical properties: the case of Kuyu District, Ethiopia,” Eur. J. Soil Sci. 8 (2), 94–109 (2019). https://doi.org/10.18393/ejss.510744

    Article  Google Scholar 

  46. N. A. Di Benedetto, M. R. Corbo, D. Campaniello, M. P. Cataldi, A. Bevilacqua, M. Sinigaglia, and Z. Flagella, “The role of plant growth promoting bacteria in improving nitrogen use efficiency for sustainable crop production: a focus on wheat,” AIMS Microbiol. 3 (3), 413 (2017). https://doi.org/10.3934/microbiol.2017.3.413

    Article  Google Scholar 

  47. N. Fierer and R. B. Jackson, “The diversity and biogeography of soil bacterial communities,” Proc. Natl. Acad. Sci. U.S.A. 103 (3), 626–631 (2006). https://doi.org/10.1073/pnas.0507535103

    Article  Google Scholar 

  48. N. Fierer, M. A. Bradford, and R. B. Jackson, “Toward an ecological classification of soil bacteria,” Ecology 88 (6), 1354–1364 (2007). https://doi.org/10.1890/05-1839

    Article  Google Scholar 

  49. N. J. Fredriksson, M. Hermansson, and B. M. Wilén, “The choice of PCR primers has great impact on assessments of bacterial community diversity and dynamics in a wastewater treatment plant,” PLoS One 8 (10), e76431 (2013). https://doi.org/10.1371/journal.pone.0076431

    Article  Google Scholar 

  50. P. D. Schloss, S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. A. Lesniewski, B. B. Oakley, D. H. Parks, C. J. Robinson, and J. W. Sahl, “Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities,” Appl. Environ. Microbiol. 75 (23), 7537–7541 (2009). https://doi.org/10.1128/AEM.01541-09

    Article  Google Scholar 

  51. P. Nannipieri, J. Ascher, M. T. Ceccherini, L. Landi, G. Pietramellara, and G. Renella, “Microbial diversity and soil functions,” Eur. J. Soil Sci. 68 (1), 12–26 (2003). https://doi.org/10.1111/ejss.4_12398

    Article  Google Scholar 

  52. Q. Tian, T. Taniguchi, W. Y. Shi, G. Li, N. Yamanaka, and S. Du, “Land-use types and soil chemical properties influence soil microbial communities in the semi-arid Loess Plateau region in China,” Sci. Rep. 7, 45289 (2017). https://doi.org/10.1038/srep45289

    Article  Google Scholar 

  53. Q. Zhang, J. Yang, R. T. Koide, T. Li, H. Yang, and J. Chu, “A meta-analysis of soil microbial biomass levels from established tree plantations over various land uses, climates and plant communities,” Catena 150, 256–260 (2017). https://doi.org/10.1016/j.catena.2016.11.028

    Article  Google Scholar 

  54. R Development Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).

    Google Scholar 

  55. R. C. Edgar, B. J. Haas, J. C. Clemente, C. Quince, and R. Knight, “UCHIME improves sensitivity and speed of chimera detection,” Bioinformatics 27 (16), 2194–2200 (2011). https://doi.org/10.1093/bioinformatics/btr381

    Article  Google Scholar 

  56. R. E. Creamer, D. Stone, P. Berry, and I. Kuiper, “Measuring respiration profiles of soil microbial communities across Europe using MicroResp™ method,” Appl. Soil Ecol. 97, 36–43 (2016). https://doi.org/10.1016/j.apsoil.2015.08.004

    Article  Google Scholar 

  57. R. E. Creamer, R. P. O. Schulte, D. Stone, A. Gal, P. H. Krogh, G. L. Papa, P. Murray, G. Peres, B. Foerster, M. Rutgers, and J. P. Sousa, “Measuring basal soil respiration across Europe: Do incubation temperature and incubation period matter?” Ecol. Indic. 36, 409–418 (2014). https://doi.org/10.1016/j.ecolind.2013.08.015

    Article  Google Scholar 

  58. R. Poretsky, R. L. M. Rodriguez, C. Luo, D. Tsementzi, and K. T. Konstantinidis, “Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics,” PLoS One 9 (4), e93827 (2014). https://doi.org/10.1371/journal.pone.0093827

    Article  Google Scholar 

  59. R. T. Jones, “Comprehensive survey of soil Rhizobiales diversity using high-throughput DNA sequencing,” in Biological Nitrogen Fixation, Ed. by F. J. E. Bruijn (Wiley, Chichester, 2015), pp. 769–776. https://doi.org/10.1002/9781119053095.ch76

  60. S. K. Hargreaves and K. S. Hofmockel, “Physiological shifts in the microbial community drive changes in enzyme activity in a perennial agroecosystem,” Biogeochemistry 117 (1), 67–79 (2014). https://doi.org/10.1007/s10533-013-9893-6

    Article  Google Scholar 

  61. S. Kahsay and M. Mulugeta, “Determinants of rural household food insecurity in Laelay Maichew Woreda Tigray, Ethiopia,” Afr. J. Agric. Res. 2 (1), 106–112 (2014).

    Google Scholar 

  62. S. J. Joseph, P. Hugenholtz, P. Sangwan, C. A. Osborne, and P. H. Janssen, “Laboratory cultivation of widespread and previously uncultured soil bacteria,” Appl. Environ. Microbiol. 69 (12), 7210–7215 (2003). https://doi.org/10.1128/AEM.69.12.7210-7215.2003

    Article  Google Scholar 

  63. S. Rughöft, M. Herrmann, C. S. Lazar, S. Cesarz, S. R. Levick, S. E. Trumbore, and K. Küsel, “Community composition and abundance of bacterial, archaeal and nitrifying populations in savanna soils on contrasting bedrock material in Kruger National Park, South Africa,” Front. Microbiol. 7, 1638 (2016). https://doi.org/10.3389/fmicb.2016.01638

    Article  Google Scholar 

  64. T. Abera, D. Wegary, E. Semu, B. M. Msanya, T. Debele, and H. Kim, “Pedological characterization, fertility status and classification of the soils under maize production of Bako Tibe and Toke Kutaye districts of Western Showa, Ethiopia,” Ethiop. J. Appl. Sci. Technol. 7, 1–17 (2016).

    Google Scholar 

  65. T. J. Jackson, R. F. Ramaley, and W. G. Meinschein, “Thermomicrobium, a new genus of extremely thermophilic bacteria,” Int. J. Syst. Bacteriol. 23 (1), 28–36 (1973). https://doi.org/10.1099/00207713-23-1-28

    Article  Google Scholar 

  66. T. Mori, X. Lu, R. Aoyagi, and J. Mo, “Reconsidering the phosphorus limitation of soil microbial activity in tropical forests,” Funct. Ecol. 32 (5), 1145–1154 (2018). https://doi.org/10.1111/1365-2435.13043

    Article  Google Scholar 

  67. T. Teklay, A. Nordgren, and A. Malmer, “Soil respiration characteristics of tropical soils from agricultural and forestry land uses at Wondo Genet (Ethiopia) in response to C, N and P amendments,” Soil Biol. Biochem. 38 (1), 125–133 (2006). https://doi.org/10.1016/j.soilbio.2005.04.024

    Article  Google Scholar 

  68. T. Yitbarek, S. Beyene, and K. Kibret, “Characterization and classification of soils of Abobo Area, Western Ethiopia,” Appl. Environ. Soil Sci. 2016, 4708235 (2016). https://doi.org/10.1155/2016/4708235

    Article  Google Scholar 

  69. V. Kunin, A. Engelbrektson, H. Ochman, and P. Hugenholtz, “Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates,” Environ. Microbiol. 12 (1), 118–123 (2010). https://doi.org/10.1111/j.1462-2920.2009.02051.x

    Article  Google Scholar 

  70. V. Nehra and M. Choudhary, “A review on plant growth promoting rhizobacteria acting as bioinoculants and their biological approach towards the production of sustainable agriculture,” J. Appl. Nat. Sci. 7 (1), 540–556 (2015). https://doi.org/10.31018/jans.v7i1.642

    Article  Google Scholar 

  71. Ethiopia—Managing Water Resources to Maximize Sustainable Growth (World Bank, Washington, DC, 2006).

  72. Y. T. Delelegn, W. Purahong, H. Sandén, B. Yitaferu, D. I. Godbold, and T. Wubet, “Transition of Ethiopian highland forests to agriculture-dominated landscapes shifts the soil microbial community composition,” BMC Ecol. 18 (1), 58 (2018). https://doi.org/10.1186/s12898-018-0214-8

    Article  Google Scholar 

  73. Y. X. Chen, L. Zou, P. Penttinen, Q. Chen, Q. Q. Li, C.Q. Wang, and K. W. Xu, “Faba bean (Vicia faba L.) nodulating rhizobia in Panxi, China, are diverse at species, plant growth promoting ability, and symbiosis related gene levels,” Front. Microbiol. 9, 1338 (2018). https://doi.org/10.3389/fmicb.2018.01338

    Article  Google Scholar 

  74. Z. Belay, M. Vestberg, and F. Assefa, “Diversity and abundance of arbuscular mycorrhizal fungi associated with acacia trees from different land use systems in Ethiopia,” Afr. J. Microbiol. Res. 7 (48), 5503–5515 (2013). https://doi.org/10.5897/AJMR2013.6115

    Article  Google Scholar 

  75. Z. S. L. Foster, T. J. Sharpton, and N. J. Grünwald, “Metacoder: An R package for visualization and manipulation of community taxonomic diversity data,” PLoS Comput. Biol. 13 (2), e1005404 (2017). https://doi.org/10.1371/journal.pcbi.1005404

    Article  Google Scholar 

  76. Z. Tsegaye, B. Gizaw, G. Tefera, A. Feleke, S. Chaniyalew, T. Alemu, and F. Assefa, “Isolation and biochemical characterization of Plant Growth Promoting (PGP) bacteria colonizing the rhizosphere of Tef crop during the seedling stage,” Biomed. J. Sci. Tech. Res. 14 (2), 1586–1597 (2019). https://doi.org/10.29328/journal.jpsp.1001027

    Article  Google Scholar 

Download references

FUNDING

This work was funded by Stipendium Hungaricum Scholarship Program (SHE-935-1/2016 and it was supported by the Ministry of Innovation and Technology within the framework of the Thematic Excellence Program 2020, Institutional Excellence Sub-Program (TKP2020-IKA-12) in the topic of water-related researches of Hungarian University of Agriculture and Life Sciences. Mátyás Cserháti was supported by the ÚNKP-18-4/12 New National Excellence Program of the Ministry of Human Capacities. We are grateful to Mr. Mehretab Haileselassie and other Tigray Agricultural Research Institute members for their help in the fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Weldmichael.

Ethics declarations

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weldmichael, T.G., Márton, D., Simon, B. et al. Bacterial Community Characterization and Microbial Respiration of Selected Arable Soils of Ethiopia. Eurasian Soil Sc. 54, 1921–1934 (2021). https://doi.org/10.1134/S1064229321120140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321120140

Keywords:

Navigation