Skip to main content
Log in

Biological Activity of Soils in the North of the Novaya Zemlya Archipelago: Effect of the Largest Glacial Sheet in Russia

  • SOIL BIOLOGY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The vegetation cover and the chemical and physical properties of strongly skeletal residual-calcareous pelozems (Skeletic Leptosols (Loamic)), carbopetrozems (Calcaric Leptosols (Protic)), petrozems (Skeletic Leptosols (Protic)), and cryozems (Oxyaquic Cryosols (Loamic)) in the northern part of the Novaya Zemlya archipelago are described. The reserves and structure of microbial biomass, the intensity of СО2 (basal and substrate-induced respiration), СН4 (methanogenesis), and N2O (denitrification) emissions in the soil samples have been determined. The biomass of microorganisms (prokaryotes and fungi in total) varies from 22.50 to 390.18 μg/g soil. The share of mycobiota in the microbial biomass reaches 80–98%. Most of the microbial biomass (up to 50%) is concentrated in the surface horizons. The number of prokaryotes ranges from 1.5 × 107 to 9.66 × 108 cells/g soil, and the biomass of fungi varies from 22 to 372 μg/g soil. The length of the actinomycete mycelium is small: from 0.6 to 23.5 m/g soil, and the length of fungal hyphae is an order of magnitude higher (up to 166 m/g soil). All parameters of the biological activity of the studied soils sharply decrease down the soil profiles being positively correlated with the contents of organic matter, carbon, and nitrogen. In general, the values of the studied indicators of the biological activity of soils in the north of Novaya Zemlya are lower than those in soils located 3°–5° to the north, on Franz Josef Land. This phenomenon is explained by the influence of the largest glacier in Russia on the soil and vegetation cover on the adjacent territory in the north of Novaya Zemlya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. Symbol sk was suggested by N.B. Khitrov and M.I. Gersimova to denote horizons with the high content of the coarse skeletal (>2 mm) material.

REFERENCES

  1. E. Aleksandrova, Vegetation of the Polar Deserts of the USSR (Nauka, Leningrad, 1983) [in Russian].

    Google Scholar 

  2. T. V. Ananko, M. I. Gerasimova, and D. E. Konyushkov, “Arctic and tundra soils on a new digital soil map of Russia, scale 1 : 2.5 million,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 101, 46–75 (2020).

  3. S. V. Goryachkin, Soil Cover of the North: Structure, Genesis, Ecology, and Evolution (GEOS, Moscow, 2010) [in Russian].

  4. S. V. Goryachkin, N. A. Karavaeva, and V. O. Targulian, “Geography of Arctic soils: current problems,” Eurasian Soil Sci. 31, 467–476 (1998).

    Google Scholar 

  5. S. V. Goryachkin, S. V. Lyubova, and T. V. Levandovskaya, “Soil-geochemical features of the coastal and island geosystems in extreme conditions of Arctic,” in Materials of the Scientific-Educational Expedition “Arctic Floating University–2015” (Northern (Arctic) Federal University, Arkhangelsk, 2015), pp. 35–59.

  6. S. V. Goryachkin, N. S. Mergelov, and V. O. Targulian, “Extreme pedology: elements of theory and methodological approaches,” Eurasian Soil Sci. 52, 1–13 (2019). https://doi.org/10.1134/S1064229319010046

    Article  Google Scholar 

  7. I. V. Grishchenko, “Climate,” in Novaya Zemlya Archipelago (Paulsen, Moscow, 2009), pp. 307–311.

  8. T. G. Dobrovol’skaya, A. V. Golovchenko, and D. G. Zvyagintsev, “Analysis of ecological factors limiting the destruction of high-moor peat,” Eurasian Soil Sci. 47, 182–193 (2014). https://doi.org/10.1134/S106422931403003X

    Article  Google Scholar 

  9. T. G. Dobrovol’skaya, D. G. Zvyagintsev, I. Yu. Chernov, A. V. Golovchenko, G. M. Zenova, L. V. Lysak, N. A. Manucharova, O. E. Marfenina, L. M. Polyanskaya, A. L. Stepanov, and M. M. Umarov, “The role of microorganisms in the ecological functions of soils,” Eurasian Soil Sci. 48, 959–967 (2015). https://doi.org/10.1134/S1064229315090033

    Article  Google Scholar 

  10. M. S. Dubrova, D. A. Lubsanova, E. P. Makarova, P. A. Kozhevin, N. A. Manucharova, and G. M. Zenova, “Psychrotolerant actinomycetes in soils of the tundra and northern taiga,” Moscow Univ. Soil Sci. Bull. 66, 45–49 (2011).

    Article  Google Scholar 

  11. D. G. Zvyagintsev, Practical Manual on Soil Microbiology and Biochemistry (Moscow State University, Moscow, 1991) [in Russian].

    Google Scholar 

  12. Yu. A. Zlobin, Principles and Methods of Studying of Cenotic Plant Populations (Kazan, 1989) [in Russian].

    Google Scholar 

  13. K. Sh. Kazeev, M. A. Kutrovskii, E. V. Dadenko, L. S. Vezdeneeva, S. I. Kolesnikov, and V. F. Val’kov, “The influence of carbonates in parent rocks on the biological properties of mountain soils of the Northwest Caucasus region,” Eurasian Soil Sci. 45, 282–289 (2012).

    Article  Google Scholar 

  14. I. Yu. Kirtsideli, D. Yu. Vlasov, E. P. Barantsevich, V. A. Krylenkov, and V. T. Sokolov, “Complexes of microscopic fungi in soils of the polar Izvestiy TSIK Islands (Kara Sea),” Mikol. Fitopatol., No. 48 (6), 365–371 (2014).

  15. V. V. Krupskaya, A. Yu. Miroshnikov, O. V. Dorzhieva, S. V. Zakusin, I. N. Semenkov, and A. A. Usacheva, “Mineral composition of soils and bottom sediments in bays of Novaya Zemlya,” Oceanology (Engl. Transl.) 57, 215–221 (2017).

  16. A. N. Kuliev, “Vegetation,” in Novaya Zemlya Archipelago (Paulsen, Moscow, 2009), pp. 334–349.

  17. L. V. Lysak, I. A. Maksimova, D. A. Nikitin, A. E. Ivanova, A. G. Kudinova, V. S. Soina, and O. E. Marfenina, “Soil microbial communities of Eastern Antarctica,” Moscow Univ. Biol. Sci. Bull. 73, 104–112 (2018).

    Article  Google Scholar 

  18. N. A. Manucharova, Molecular-Biological Aspects in the Ecological and microbiological Studies (Moscow State University, Moscow, 2010) [in Russian].

    Google Scholar 

  19. A. Yu. Miroshnikov, N. P. Laverov, R. A. Chernov, A. V. Kudikov, A. A. Ysacheva, I. N. Semenkov, R. A. Aliev, E. E. Asadulin, and M. V. Gavrilo, “Radioecological investigations on the Northern Novaya Zemlya Archipelago,” Oceanology (Engl. Transl.) 57, 204–214 (2017).

  20. D. S. Moseev and L. A. Sergienko, “Flora of the islands of the Franz Josef Land Archipelago and the northern part of the Novaya Zemlya Archipelago: annotated list of species,” Uch. Zap. Petrozavodsk. Gos. Univ., No. 4, (2017).

  21. D. A. Nikitin, L. V. Lysak, N. S. Mergelov, A. V. Dolgikh, E. P. Zazovskaya, and S. V. Goryachkin, “Microbial biomass, carbon stocks, and CO2 emission in soils of Franz Josef Land: high-Arctic tundra or polar deserts?” Eurasian Soil Sci. 53, 467–484 (2020). https://doi.org/10.1134/S1064229320040110

    Article  Google Scholar 

  22. D. A. Nikitin, O. E. Marfenina, A. G. Kudinova, L. V. Lysak, N. S. Mergelov, A. V. Dolgikh, and A. V. Lupachev, “Microbial biomass and biological activity of soils and soil-like bodies in coastal oases of Antarctica,” Eurasian Soil Sci. 50, 1086–1097 (2017). https://doi.org/10.1134/S1064229317070079

    Article  Google Scholar 

  23. D. A. Nikitin, M. V. Semenov, A. A. Semikolennykh, I. A. Maksimova, A. V. Kachalkin, and A. E. Ivanova, “Biomass of fungi and species diversity of cultured microbiota of soil and substrates of the Northbrook Island (Franz Josef Land),” Mikol. Fitopatol., No. 53 (4), 210–222 (2019). https://doi.org/10.1134/S002636481904010X

  24. D. A. Nikitin, M. V. Semenov, A. A. Tkhakakhova, A. D. Zhelezova, N. A. Bgazhba, and O. V. Kutovaya, “The number of copies of mycobiota ribosomal genes in soils and soil-like objects of the Franz Josef Land and Novaya Zemlya archipelagos,” in The Scientific-Educational Expedition “Arctic Floating University–2017” (KIRA, Arkhangelsk, 2017), pp. 35–39.

  25. L. M. Polyanskaya and D. G. Zvyagintsev, “The content and composition of microbial biomass as an index of the ecological status of soil,” Eurasian Soil Sci. 38, 625–633 (2005).

    Google Scholar 

  26. L. M. Polyanskaya, I. P. Pinchuk, and A. L. Stepanov, “Comparative analysis of the luminescence microscopy and cascade filtration methods for estimating bacterial abundance and biomass in the soil: Role of soil suspension dilution,” Eurasian Soil Sci. 50, 1173–1176 (2017).

    Article  Google Scholar 

  27. I. N. Semenkov, Physico-geographical characteristics of the Novaya Zemlya archipelago (review), 2020. https://doi.org/10.13140/RG.2.2.15583.20642

  28. V. M. Semenov, A. S. Tulina, N. A. Semenova, and L. A. Ivannikova, “Humification and nonhumification pathways of the organic matter stabilization in soil: a review,” Eurasian Soil Sci. 46, 355–368 (2013). https://doi.org/10.1134/S106422931304011X

    Article  Google Scholar 

  29. I. P. Smirnov, “The dynamics of coastal landscapes in the northeast of the Severny island of the Novaya Zemlya archipelago,” Izv. Russ. Geogr. O-va 147 (3), 30–41 (2015).

    Google Scholar 

  30. V. S. Soina, N. S. Mergelov, A. G. Kudinova, L. V. Lysak, E. V. Demkina, E. A. Vorob’eva, A. V. Dolgikh, and I. G. Shorkunov, Research of Soil Microbial Communities and in soil-Like Objects in Extreme Conditions of Antarctica (Moscow, 2017), pp. 149–168.

    Google Scholar 

  31. A. L. Stepanov and L. V. Lysak, Methods of Gas Chromatography in Soil Microbiology (MAKS Press, Moscow, 2003), p. 151.

    Google Scholar 

  32. S. S. Kholod, “Vegetation in the vicinity of Cape Zhelaniya (Severny Island, Novaya Zemlya Archipelago),” Rastit. Ross., No. 38, 85–138 (2020). https://doi.org/10.31111/vegrus/2020.38.85

  33. D. A. Shakhin, “Overview of the vegetation cover of the western coast of Novaya Zemlya Archipelago,” in Novaya Zemlya Archipelago: Nature, history, Archeology, and Culture, Tr. Morsk. Arkt. Kompl. Eksp. no. 3. (2) (Moscow, 1992), pp. 98–124.

  34. N. D. Ananyeva, S. Castaldi, E. V. Stolnikova, V. N. Kudeyarov, and R. Valentini, “Fungi-to-bacteria ratio in soils of European Russia,” Arch. Agron. Soil Sci. 61 (4), 427–446 (2015). https://doi.org/10.1080/03650340.2014.940916

    Article  Google Scholar 

  35. K. A. Arndt, W. C. Oechel, J. P. Goodrich, B. A. Bailey, A. Kalhori, J. Hashemi, C. Sweeney, and D. Zona, “Sensitivity of methane emissions to later soil freezing in Arctic tundra ecosystems,” J. Geophys. Res.: Biogeosci. 124 (8), 2595–2609 (2019). https://doi.org/10.1029/2019JG005242

    Article  Google Scholar 

  36. P. Baldrian, “The known and the unknown in soil microbial ecology,” FEMS Microbiol. Ecol. 95 (2), fiz005 (2019). https://doi.org/10.1093/femsec/fiz005

    Article  Google Scholar 

  37. B. A. Ball and R. A. Virginia, “Microbial biomass and respiration responses to nitrogen fertilization in a polar desert,” Polar Biol. 37 (4), 573–585 (2014). https://doi.org/10.1007/s00300-014-1459-0

    Article  Google Scholar 

  38. C. Bakermans and L. A. Emili, “Terrestrial systems of the Arctic as a model for growth and survival at low temperatures,” in Model Ecosystems in Extreme Environments (Academic, London, 2019), pp. 1–21. https://doi.org/10.1016/B978-0-12-812742-1.00001-5

  39. Microbiological Methods for Assessing Soil Quality, Ed. by J. Bloem, D. W. Hopkins, and A. Benedetti (CABI, Wallingford, 2005).

    Google Scholar 

  40. W. L. Boyd, “Microbiological studies of arctic soils,” Ecology 39 (2), 332–336 (1958). https://doi.org/10.2307/1931879

    Article  Google Scholar 

  41. S. Bräuer, N. Basiliko, H. Siljanen, and S. Zinder, “Methanogenic archaea in peatlands,” FEMS Microbiol. Lett. 367 (20), fnaa172 (2020). https://doi.org/10.1093/femsle/fnaa172

  42. P. D. Bridge and B. M. Spooner, “Non-lichenized Antarctic fungi: transient visitors or members of a cryptic ecosystem?” Fungal Ecol. 5 (4), 381–394 (2012). https://doi.org/10.1016/j.funeco.2012.01.007

    Article  Google Scholar 

  43. T. I. Chernov, A. K. Tkhakakhova, M. P. Lebedeva, A. D. Zhelezova, N. A. Bgazhba, and O. V. Kutovaya, “Microbiomes of the soils of solonetzic complex with contrasting salinization on the Volga–Ural interfluve,” Eurasian Soil Sci. 51, 1057–1066 (2018). https://doi.org/10.1134/S1064229318090041

    Article  Google Scholar 

  44. F. Cox, K. K. Newsham, R. Bol, J. A. J. Dungait, and C. H. Robinson, “Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic,” Ecol. Lett. 19 (5), 528–536 (2016). https://doi.org/10.1111/ele.12587

    Article  Google Scholar 

  45. A. Darrouzet-Nardi, H. Steltzer, P. F. Sullivan, A. Segal, A. M. Koltz, C. Livensperger, et al., “Limited effects of early snowmelt on plants, decomposers, and soil nutrients in Arctic tundra soils,” Ecol. Evol. 9 (4), 1820–1844 (2019). https://doi.org/10.1002/ece3.4870

    Article  Google Scholar 

  46. T. Fischer, “Humic supramolecular structures have polar surfaces and unpolar cores in native soil,” Chemosphere 183, 437–443 (2017). https://doi.org/10.1016/j.chemosphere.2017.05.125

    Article  Google Scholar 

  47. C. G. Flocco, W. P. MacCormack, and K. Smalla, “Antarctic soil microbial communities in a changing environment: their contributions to the sustainability of Antarctic ecosystems and the bioremediation of anthropogenic pollution,” in The Ecological Role of Microorganisms in the Antarctic Environment (Springer-Verlag, New York, 2019), pp. 133–161). https://doi.org/10.1007/978-3-030-02786-5_7

  48. I. D. Grodnitskaya, L. V. Karpenko, A. A. Knorre, and S. N. Syrtsov, “Microbial activity of peat soils of boggy larch forests and bogs in the permafrost zone of central Evenkia,” Eurasian Soil Sci. 46, 61–73 (2013). https://doi.org/10.1134/S1064229313010043

    Article  Google Scholar 

  49. J. Handelsman, “Metagenomics: application of genomics to uncultured microorganisms,” Microbiol. Mol. Biol. Rev. 68 (4), 669–685 (2004). https://doi.org/10.1128/MMBR.69.1.195.2005

    Article  Google Scholar 

  50. I. P Hartley, D. W. Hopkins, M. H. Garnett, M. Sommerkorn, and P. A. Wookey, “Soil microbial respiration in arctic soil does not acclimate to temperature,” Ecol. Lett. 11, 1092–1100 (2008). https://doi.org/10.1111/j.1461-0248.2008.01223.x

    Article  Google Scholar 

  51. N. Hassan, M. Rafiq, M. Hayat, A. Ali Shah, and F. Hasan, “Psychrophilic and psychrotrophic fungi: a comprehensive review,” Rev. Environ. Sci. Bio/Technol. 15 (2), 147–172 (2016). https://doi.org/10.1007/s11157-016-9395-9399

    Article  Google Scholar 

  52. F. Isbell, D. Craven, J. Connolly, M. Loreau, B. Schmid, C. Beierkuhnlein, et al., “Biodiversity increases the resistance of ecosystem productivity to climate extremes,” Nature 526 (7574), 574 (2015). https://doi.org/10.1038/nature15374

    Article  Google Scholar 

  53. M. R. Islam, G. Tudryn, R. Bucinell, L. Schadler, and R. C. Picu, “Morphology and mechanics of fungal mycelium,” Sci. Rep. 7 (1), 1–12 (2017). https://doi.org/10.1038/s41598-018-20637-1

    Article  Google Scholar 

  54. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

  55. Kavanagh, K. Fungi: Biology and Applications (Wiley, Chichester, 2017).

    Book  Google Scholar 

  56. N. Kaviya, V. K. Upadhayay, J. Singh, A. Khan, M. Panwar, and A. V. Singh, “Role of microorganisms in soil genesis and functions,” in Mycorrhizosphere and Pedogenesis (Springer-Verlag, New York, 2019), pp. 25–52. https://doi.org/10.1007/978-981-13-6480-8_2

  57. F. Li, R. Zhu, T. Bao, Q. Wang, and H. Xu, “Sunlight stimulates methane uptake and nitrous oxide emission from the High Arctic tundra,” Sci. Total Environ. 572, 1150–1160 (2016). https://doi.org/10.1016/j.scitotenv.2016.08.026

    Article  Google Scholar 

  58. Y. Lu and S. Liu, “Cracking in an expansive soil under freeze–thaw cycles,” Sci. Cold Arid Reg. 9 (4), 392–397 (2018).

    Google Scholar 

  59. T. P. Makhalanyane, A. Valverde, D. Velázquez, E. Gunnigle, M. W. Van Goethem, A. Quesada, and D. A. Cowan, “Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats,” Biodiversity Conserv. 24 (4), 819–840 (2015). https://doi.org/10.1007/s10531-015-0902-z

    Article  Google Scholar 

  60. L. A. Malard and D. A. Pearce, “Microbial diversity and biogeography in Arctic soils,” Environ. Microbiol. Rep. 10 (6), 611–625 (2018). https://doi.org/10.1111/1758-2229.12680

    Article  Google Scholar 

  61. F. Mapelli, R. Marasco, M. Fusi, B. Scaglia, G.Tsiamis, E. Rolli, S. Fodelianakis, K. Bourtzis, S. Ventura, F. Tambone, F. Adani, S. Borin, and D. Daffonchio, “The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence,” ISME J. 12 (5), 1188–1198 (2018). https://doi.org/10.1038/s41396-017-0026-4

    Article  Google Scholar 

  62. M. Rippin, S. Lange, N. Sausen, and B. Becker, “Biodiversity of biological soil crusts from the Polar regions revealed by metabarcoding,” FEMS Microbiol. Ecol. 94 (4), fiy036 (2018). https://doi.org/10.1093/femsec/fiy036

    Article  Google Scholar 

  63. Y. A. Mazei, A. N. Tsyganov, V. A. Chernyshov, A. A. Ivanovsky, and R. J. Payne, “First records of testate amoebae from the Novaya Zemlya archipelago (Russian Arctic),” Polar Biol. 41 (6), 1133–1142 (2018). https://doi.org/10.1007/s00300-018-2273-x

    Article  Google Scholar 

  64. A. Merkel, Molecular ecology of methanogenic and methanotrophic archaea in hydrothermal habitats, 2015. https://doi.org/10.13140/RG.2.1.2678.2561

  65. N. Millán-Aguiñaga, S. Soldatou, S. Brozio, J. T. Munnoch, J. Howe, P. A. Hoskisson, and K. R. Duncan, “Awakening ancient polar Actinobacteria: diversity, evolution and specialized metabolite potential,” Microbiology 165 (11), 1169–1180 (2019). https://doi.org/10.1099/mic.0.000845

    Article  Google Scholar 

  66. L. A. Morrissey and G. P. Livingston, “Methane emissions from Alaska Arctic tundra: An assessment of local spatial variability,” J. Geophys. Res.: Atmos. 97 (15), 16661–16670 (1992). https://doi.org/10.1029/92JD00063

    Article  Google Scholar 

  67. S. A. Nadeau, C. A. Roco, S. J. Debenport, T. R. Anderson, K. L. Hofmeister, M. T. Walter, and J. P. Shapleigh, “Metagenomic analysis reveals distinct patterns of denitrification gene abundance across soil moisture, nitrate gradients,” Environ. Microbiol. 21 (4), 1255–1266 (2019). https://doi.org/10.1111/1462-2920.14587

    Article  Google Scholar 

  68. W. C. Oechel, G. Vourlitis, and S. J. Hastings, “Cold season CO2 emission from arctic soils,” Global Biogeochem. Cycles 11 (2), 163–172 (1997). https://doi.org/10.1029/96GB03035

    Article  Google Scholar 

  69. Y. Oh, Q. Zhuang, L. Liu, L. R. Welp, M. C. Y. Lau, T. C. Onstott, et al., “Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic,” Nat. Clim. Change 10 (4), 317–321 (2020). https://doi.org/10.1038/s41558-020-0734-z

    Article  Google Scholar 

  70. A. Pastor, A. Freixa, L. J. Skovsholt, N. Wu, A. M. Romaní, and T. Riis, “Microbial organic matter utilization in high-Arctic streams: key enzymatic controls,” Microb. Ecol. 78 (3), 539–554 (2019). https://doi.org/10.1007/s00248-019-01330-w

    Article  Google Scholar 

  71. J. Paukkunen and M. V. Kozlov, “Stinging wasps, ants and bees (Hymenoptera: Aculeata) of the Nenets Autonomous Okrug, northern Russia,” Ann. Zool. Fenn. 57 (1–6), 115–128 (2020). https://doi.org/10.5735/086.057.0112

    Article  Google Scholar 

  72. A. Rusakov, A. Makeev, O. Khokhlova, P. Kust, M. Lebedeva, T. Chernov, A. Golyeva, A. Popov, F. Kurbanova, and T. Puzanova, “Paleoenvironmental reconstruction based on soils buried under Scythian fortification in the southern forest-steppe area of the East European Plain,” Quat. Int. 502, 197–217 (2019). https://doi.org/10.1016/j.quaint.2018.05.016

    Article  Google Scholar 

  73. T. K. Russel, Microbial Biomass: A Paradigm Shift in Terrestrial Biogeochemistry (World Scientific, Singapore, 2017).

    Google Scholar 

  74. H. Šantrůčková, P. Kotas, J. Bárta, T. Urich, P. Čapek, J. Palmtag, et al., “Significance of dark CO2 fixation in arctic soils,” Soil Biol. Biochem. 119, 11–21 (2018).

    Article  Google Scholar 

  75. N. Schmidt and M. Bölter, “Fungal and bacterial biomass in tundra soils along an arctic transect from Taimyr Peninsula, central Siberia,” Polar Biol. 25 (12), 871–877 (2002). https://doi.org/10.1007/s00300-002-0422-7

    Article  Google Scholar 

  76. M. V. Semenov, T. I. Chernov, A. K. Tkhakakhova, A. D. Zhelezova, E. A. Ivanova, T. V. Kolganova, and O. V. Kutovaya, “Distribution of prokaryotic communities throughout the Chernozem profiles under different land uses for over a century,” Appl. Soil Ecol. 127, 8–18 (2018). https://doi.org/10.1016/j.apsoil.2018.03.002

    Article  Google Scholar 

  77. S. Shivaji, M. K. Chattopadhyay, and G. S. Reddy, “Diversity of bacteria from Antarctica, Arctic, Himalayan glaciers and stratosphere,” Proc. Indian Natl. Sci. Acad. 85 (4), 909–923 (2019). https://doi.org/10.16943/ptinsa/2019/4971778

  78. J. Sikorski, “The prokaryotic biology of soil,” Soil Organ. 87 (1), 1–28 (2015).

  79. J. S. Singh and V. K. Gupta, “Soil microbial biomass: a key soil driver in management of ecosystem functioning,” Sci. Total Environ. 634, 497–500 (2018). https://doi.org/10.1016/j.scitotenv.2018.03.373

    Article  Google Scholar 

  80. J. L. Soong, L. Fuchslueger, S. Marañon-Jimenez, M. S. Torn, I. A. Janssens, J. Penuelas, and A. Richter, “Microbial carbon limitation: the need for integrating microorganisms into our understanding of ecosystem carbon cycling,” Global Change Biol. 26 (4), 1953–1961 (2020). https://doi.org/10.1111/gcb.14962

    Article  Google Scholar 

  81. K. Sterflinger, D. Tesei, and K. Zakharova, “Fungi in hot and cold deserts with particular reference to microcolonial fungi,” Fungal Ecol. 5 (4), 453–462 (2012). https://doi.org/10.1016/j.funeco.2011.12.007

    Article  Google Scholar 

  82. C. Voigt, R. E Lamprecht, M. E Marushchak, S. E. Lind, A. Novakovskiy, M. Aurela, P. J. Martikainen, and C. Biasi, “Warming of subarctic tundra increases emissions of all three important greenhouse gases—carbon dioxide, methane, and nitrous oxide,” Global Change Biol. 23, 3121–3138 (2017). https://doi.org/10.1111/gcb.13563

    Article  Google Scholar 

  83. S. T. S. Wei, D. C. Lacap-Bugler, M. C. Y. Lau, T. Caruso, S. Rao, A. de los Rios, et al., “Taxonomic and functional diversity of soil and hypolithic microbial communities in Miers Valley, McMurdo Dry Valleys, Antarctica,” Front. Microbiol. 7, 1642 (2016). https://doi.org/10.3389/fmicb.2016.01642

    Article  Google Scholar 

  84. B. Xiao and K. Hu, “Moss-dominated biocrusts decrease soil moisture and result in the degradation of artificially planted shrubs under semiarid climate,” Geoderma 291, 47–54 (2017). https://doi.org/10.1016/j.geoderma.2017.01.009

    Article  Google Scholar 

  85. E. Zazovskaya, N. Mergelov, V. Shishkov, A. Dolgikh, S. Turchinskaya, D. Karelin, and S. Goryachkin, “Cryoconites as a source of carbon for soils and soil-like bodies of High latitudes,” in Proceedings of the International Conf. “Solving the Puzzles from Cryosphere,” Pushchino, Russia, April 15–18, 2019, Abstracts of Papers (Pushchino, 2019), pp. 186–187.

Download references

ACKNOWLEDGMENTS

The authors are grateful to the project “Arctic Floating University” initiated by the M.V. Lomonosov Northern (Arctic) Federal University and personally to K.S. Zaikov for organizing field work on Novaya Zemlya. They also express their gratitude to A.V. Pochikalov for the determination of the carbon and nitrogen contents in the soil samples.

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 20-04-00328, microbiological analyses) and the Russian Science Foundation (project no. 20-17-00212, analysis of the influence of the ice sheet on pedogenesis in the periglacial zone). Physicochemical analyses, calculation of carbon stocks, and determination of the classification position of studied soils were performed within the framework of state assignment no. 0148-2019-0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Nikitin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, D.A., Lysak, L.V., Badmadashiev, D.V. et al. Biological Activity of Soils in the North of the Novaya Zemlya Archipelago: Effect of the Largest Glacial Sheet in Russia. Eurasian Soil Sc. 54, 1496–1516 (2021). https://doi.org/10.1134/S1064229321100082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321100082

Keywords:

Navigation