Skip to main content
Log in

On the Inversion of the Integrodifferential Operator of a Thin Linear Nanoantenna and Dispersion Forces

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Methods of inversion of integrodifferential operators of thin linear antennas and also related to the dispersion interaction of the Casimir–Lifshitz force between two thin linear objects described by the dielectric constant in the form of Drude–Lorentz are considered. A new rigorous model for calculating Casimir–Lifshitz forces for thin dielectric or conductive filaments based on the Lorentz force is proposed. To determine correlations, the formulas of G.T. Markov, the fluctuation–dissipation theorem, and the principle of detailed equilibrium with a thermal field were used. Analytical estimates of the obtained spectral integrals are performed in the far zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. H. C. Pocklington, Proc. Cambridge Philos. Soc., No. 9, 324 (1897).

  2. H. Hertz, Nature 39, 450 (1889). https://doi.org/10.1038/039547a0

    Article  Google Scholar 

  3. E. Hallen, Nova Acta Regiae Soc. Sci. Ups. Ser. 4, 11 (4), 1 (1938).

    Google Scholar 

  4. M. A. Leontovich and M. L. Levin, Zh. Tekh. Fiz. 14 (9), 481 (1944).

    Google Scholar 

  5. P. L. Kapitsa, V. A. Fok, and L. A. Vainshtein, Zh. Tekh. Fiz. 29 (10), 1188 (1959).

    Google Scholar 

  6. P. L. Kapitsa, V. A. Fok, and L. A. Vainshtein, Zh. Tekh. Fiz. 29 (10), 1177 (1959).

    Google Scholar 

  7. L. A. Vainshtein, Zh. Tekh. Fiz. 29 (6), 673 (1959).

    Google Scholar 

  8. L. A. Vainshtein, Zh. Tekh. Fiz. 29 (6), 689 (1959).

    Google Scholar 

  9. L. A. Vainshtein, Zh. Tekh. Fiz. 31 (1), 29 (1961).

    Google Scholar 

  10. L. A. Vainshtein, Zh. Tekh. Fiz. 31 (1), 45 (1961).

    Google Scholar 

  11. L. A. Vainshtein, Zh. Tekh. Fiz. 37 (7), 1182 (1967).

    Google Scholar 

  12. L. A. Vainshtein, Zh. Tekh. Fiz. 37 (7), 1189 (1967).

    Google Scholar 

  13. S. I. Eminov, Radiotekh. Elektron. 38 (12), 2160 (1993).

    Google Scholar 

  14. V. L. Danil’chuk and S. I. Eminov, Zh. Tekh. Fiz. 65 (5), 201 (1995).

    Google Scholar 

  15. S. N. Plotnikov, A. V. Sochilin, and S. I. Eminov, Radiotekhnika, No. 7, 34 (1996).

  16. V. A. Neganov and I. V. Matveev, Dokl. Phys. 45 (7), 317 (2000). https://doi.org/10.1134/1.1307078

    Article  ADS  Google Scholar 

  17. V. A. Neganov, I. V. Matveev, and S. V. Medvedev, Tech. Phys. Lett. 26, 535 (2000). https://doi.org/10.1134/1.1262903

    Article  ADS  Google Scholar 

  18. V. A. Neganov, M. G. Kornev, and I. V. Matveev, Tech. Phys. Lett. 27, 160 (2001). https://doi.org/10.1134/1.1352781

    Article  ADS  Google Scholar 

  19. V. A. Neganov, D. S. Klyuev, and S. V. Medvedev, Tech. Phys. Lett. 27, 902 (2001). https://doi.org/10.1134/1.1424387

    Article  ADS  Google Scholar 

  20. S. I. Éminov, Tech. Phys. Lett. 28, 194 (2002). https://doi.org/10.1134/1.1467273

    Article  ADS  Google Scholar 

  21. S. I. Eminov, Antenny, No. 3, 51 (2003).

  22. S. I. Éminov, Tech. Phys. Lett. 30, 933 (2004). https://doi.org/10.1134/1.1829347

    Article  ADS  Google Scholar 

  23. S. I. Éminov, Dokl. Phys. 50, 371 (2005). https://doi.org/10.1134/1.2005363

    Article  ADS  MathSciNet  Google Scholar 

  24. V. A. Neganov and D. S. Klyuev, Antenny, No. 3, 7 (2005).

  25. E. Forati, A. D. Mueller, P. G. Yarandi, and G. W. Hanson, IEEE Trans. Antennas Propag. 59 (11), 4355 (2011).

    Article  ADS  Google Scholar 

  26. M. V. Davidovich and S. P. Skobelev, Radiotekhnika, No. 1, 106 (2014).

  27. S. I. Eminov, Tech. Phys. Lett. 43, 593 (2017). https://doi.org/10.1134/S1063785017070045

    Article  ADS  Google Scholar 

  28. G. V. Hanson, IEEE Trans. Antennas Propag. 53 (11), 3426 (2005).

    Article  ADS  Google Scholar 

  29. P. J. Burke, S. Li, and Z. Yu, IEEE Trans. Nanotechnol. 5 (4), 314 (2006).

    Article  ADS  Google Scholar 

  30. N. Fitchtner, X. Zhou, and P. Russeret, “Investigation of copper and carbon nanotubes antennas using thin wire integral equations,” in Proc. Asia-Pacific Microwave Conf., Bangkok, Thailand, December 11–14, 2007 (IEEE, 2007). https://doi.org/10.1109/APMC.2007.4554722

  31. Y. Huang, W.-Y. Yin, and Q. H. Liu, IEEE Trans. Nanotechnol. 7, 331 (2008).

    Article  ADS  Google Scholar 

  32. Y. Wang and Q. Wu, Chin. Opt. Lett. 6 (10), 770 (2008).

    Article  Google Scholar 

  33. Q. Wu, Y. Wang, S.-G. Zhang, and L.-L. Zhuang, “Terahertz generation in the carbon nanotubes antenna,” in Proc. Asia-Pacific Microwave Conf., Macau, December 16–20, 2008 (IEEE, 2008), p. 978. https://doi.org/10.1109/APMC.2008.4958448

  34. J. M. Jornet and I. Akyildiz, “Grapheme-based nano-antennas for electromagnetic nanocommunications in the terahertz band,” in Proc. 4th Eur. Conf. on Antennas and Propagation, Barcelona, Spain, April 12–16, 2010 (IEEE, 2010), p. 1. https://ieeexplore.ieee.org/document/5505569.

  35. S. Choi and K. Sarabandi, “Design of efficient terahertz antennas: CNT versus gold,” in Proc. Antennas and Propagation Society Int. Symp., Toronto, Canada, July 11–17, 2010 (IEEE, 2010). https://doi.org/10.1109/APS.2010.5560976

  36. Sh. G. El-Sherbiny, S. Wageh, S. M. Elhalafawy, and A. A. Sharshar, Adv. Nano Res. 1 (1), 13 (2013).

    Article  Google Scholar 

  37. M. Davidovich, G. Kolesov, and A. Kobets, Infokommun. Radioelektron. Tekhnol. 4 (1), 17 (2021).

    Google Scholar 

  38. A. Lakhtakia, G. Ya. Slepyan, S. A. Maksimenko, A. V. Gusakov, and O. M. Yevtushenko, Carbon 36, 1833 (1998).

    Article  Google Scholar 

  39. G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, Phys. Rev. B 60, 17136 (1999).

    Article  ADS  Google Scholar 

  40. P. Franck, D. Baillargeat, and B. K. Tay, Int. J. Microwave Wireless Technol. 6 (1), 57 (2014).

    Article  Google Scholar 

  41. E. A. Bengio, D. Senic, L. W. Taylor, R. J. Headrick, M. King, P. Chen, C. A. Little, J. Ladbury, C. J. Long, C. L. Holloway, A. Babakhani, J. C. Booth, N. D. Orloff, and M. Pasquali, Appl. Phys. Lett. 114, 203102 (2019).

  42. A. Chandra, D. Chahar, and S. Sachdeva, Int. J. Eng. Dev. Res. 4 (2), 2321 (2016).

    Google Scholar 

  43. M. Hajjyahya, M. Ishtaiwi, J. Sayyed, and A. Saddouq, Open J. Antennas Propag. 9, 57 (2021).

    Article  Google Scholar 

  44. V. Barkaline, I. Abramov, E. Belogurov, A. Chashynski, V. Labunov, A. Pletezhov, and Ya. Shukevich, Nonlinear Phenom. Complex Syst. 15 (1), 23 (2012).

    Google Scholar 

  45. V. Ryzhii, M. Ryzhii, and T. Otsuji, J. Appl. Phys. 101, 083114 (2007).

  46. M. L. Levin and S. M. Rytov, Theory of Equilibrium Thermal Fluctuations in Electrodynamics (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  47. M. V. Davidovich, J. Commun. Technol. Electron. 66 (7), 853 (2021). https://doi.org/10.1134/S1064226921060085

    Article  Google Scholar 

  48. G. T. Markov and A. F. Chaplin, Excitation of Electromagnetic Waves (Radio i Svyaz’, Moscow, 1983) [in Russian].

    Google Scholar 

  49. V. A. Neganov, E. I. Nefedov, and G. P. Yarovoi, Strip-Slot Structures of Ultra- and Ultra-High Frequencies (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  50. G. T. Markov and D. M. Sazonov, Antennas (Energiya, Moscow, 1975) [in Russian].

    Google Scholar 

  51. R. F. Harrington, Field Computation by Moment Methods (Macmillan, New York, 1968).

    Google Scholar 

  52. Computer Techniques for Electromagnetics, Ed. by R. Mittra (Pergamon, Oxford, 1973).

    Google Scholar 

  53. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics, Vol. 2: Correlation Theory of Random Processes (Springer, Berlin, 1988).

  54. H. B. G. Casimir, Proc. K. Ned. Akad. Wet., Ser. B 51, 793 (1948).

  55. M. B. U. Mohideen, G. L. Klimchitskaya, and V. M. Mostepanenko, Advances in the Casimir Effect (Oxford Univ. Press, New York, 2009).

    MATH  Google Scholar 

  56. U. Leonhardt, Forces of the Quantum Vacuum: An Introduction to Casimir Physics, Ed. by W. M. R. Simpson (World Sci., Singapore, 2015).

    Google Scholar 

  57. A. I. Volokitin and B. N. J. Persson, Electromagnetic Fluctuations at the Nanoscale. Theory and Applications (Springer, Heidelberg, 2017).

    Book  Google Scholar 

  58. E. M. Lifshitz, Sov. Phys.-JETP 2, 73 (1956).

    Google Scholar 

  59. I. S. Nefedov, M. V. Davidovich, O. E. Glukhova, M. M. Slepchenkov, and M. Rubi, Phys. Rev. B 104, 085409 (2021). https://doi.org/10.1103/PhysRevB.104.085409

  60. E. Noruzifar, T. Emig, U. Mohideen, and R. Zandi, Phys. Rev. 86, 115449 (2012). https://doi.org/10.1103/PhysRevB.86.115449

  61. S. J. Rahi, T. Emig, R. L. Jaffe, and M. Kardar, Phys. Rev. A 78, 012104 (2008). https://doi.org/10.1103/PhysRevA.78.012104

  62. M. V. Davidovich, Phys.-Usp. 53, 595 (2010). https://doi.org/10.3367/UFNe.0180.201006e.0623

    Article  Google Scholar 

  63. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1: Elementary Functions (Gordon and Breach Sci., New York, 1986).

Download references

Funding

This work was supported by the Ministry of Education and Science of Russia as part of a state order, project no. FSRR-2020-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Davidovich.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidovich, M.V. On the Inversion of the Integrodifferential Operator of a Thin Linear Nanoantenna and Dispersion Forces. Tech. Phys. 67, 468–486 (2022). https://doi.org/10.1134/S106378422207012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378422207012X

Keywords:

Navigation