Skip to main content
Log in

Radio Properties of FR0 Galaxies According to Multifrequency Measurements with RATAN-600

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Recent studies have shown that among the population of radio-loud active galactic nuclei in the local U-niverse, they numerically dominate compact radio sources of the FR0 class. In this paper, we present ob-servation results of a sample of 33 FR0 radio galaxies with RATAN-600 in the first half of 2020. For the first time, quasi-simultaneous spectra of this class objects have been measured in the frequency range as wide as 2.25–22.3 GHz. Radio luminosity of the sampled objects at the frequency 4.7 GHz varies within \({{10}^{{38.8 - 40.6}}}\) erg/s, with the average value of \({{10}^{{39.7}}}\) erg/s. The data confirm the deficit of extended radio emission: the average value of the core-dominance parameter (\(\log R \approx - 0.10\)) substantially exceeds the values typical for FRI galaxies. Quasi-simultaneous spectra are flat, while in the range 4.7–8.2 GHz, the average spectral index is close to zero. The spectra of 44 percent of objects which have more than three quasi-simultaneous points have peaked-shaped profiles. Using additional data of catalogs allowed us to identify three new candidates for the sources with the maximum of the spectrum in the GHz range. A statistically significant correlation was found between the parsec scale jet power and the bolometric luminosity of the accretion disk: \(\log\tfrac{{{{L}_{j}}}}{{{{L}_{{{\text{Edd}}}}}}} = (0.52 \pm 0.15)\log\tfrac{{{{L}_{{{\text{bol}}}}}}}{{{{L}_{{{\text{Edd}}}}}}} - (0.69 \pm 0.51)\). In general, the spectra of the studied objects are flat and have a complex structure, which indicates a high opacity in the radio range and the contribution of several components to the total spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. G. Ghisellini, AIP Conf. Proc. 1381, 180 (2011).

    Article  ADS  Google Scholar 

  2. E. M. Sadler, R. D. Ekers, E. K. Mahony, T. Mauch, and T. Murphy, Mon. Not. R. Astron. Soc. 438, 796 (2014).

    Article  ADS  Google Scholar 

  3. R. D. Baldi, A. Capetti, and G. Giovannini, Astron. Astrophys. 576, A38 (2015).

    Article  ADS  Google Scholar 

  4. R. D. Baldi, A. Capetti, and G. Giovannini, Astron. Nachr. 337, 114 (2016).

    Article  ADS  Google Scholar 

  5. R. D. Baldi, A. Capetti, and F. Massaro, Astron. Astrophys. 609, A1 (2018).

    Article  ADS  Google Scholar 

  6. X.-P. Cheng and T. An, Astrophys. J. 863, 155 (2018).

    Article  ADS  Google Scholar 

  7. R. D. Baldi, A. Capetti, and G. Giovannini, Mon. Not. R. Astron. Soc. 482, 2294 (2019).

    Article  ADS  Google Scholar 

  8. A. Capetti, F. Massaro, and R. D. Baldi, Astron. Astrophys. 633, A161 (2020).

    Article  ADS  Google Scholar 

  9. E. Torresi, P. Grandi, A. Capetti, R. D. Baldi, and G. Giovannini, Mon. Not. R. Astron. Soc. 476, 5535 (2018).

    Article  ADS  Google Scholar 

  10. J. J. Condon, W. D. Cotton, E. W. Greisen, Q. F. Yin, R. A. Perley, G. B. Taylor, and J. J. Broderick, Astron. J. 115, 1693 (1998).

    Article  ADS  Google Scholar 

  11. Yu. N. Parijskij, IEEE Antennas Propag. Mag. 35, 7 (1993).

    Article  ADS  Google Scholar 

  12. M. Mingaliev, Yu. Sotnikova, T. Mufakharov, E. Nieppola, et al., Astron. Nachr. 338, 700 (2017).

    Article  ADS  Google Scholar 

  13. O. V. Verkhodanov, S. A. Trushkin, and V. N. Chernenkov, Baltic Astronomy 6, 275 (1997).

    ADS  Google Scholar 

  14. O. V. Verkhodanov, S. A. Trushkin, H. Andernach, and V. N. Chernenkov, Bull. SAO 58, 118 (2005).

    Google Scholar 

  15. R. Yu. Udovitskii, Yu. V. Sotnikova, M. G. Mingaliev, P. G. Tsybulev, G. V. Zhekanis, and N. A. Nizhelskii, Astrophys. Bull. 71, 496 (2016).

    Article  ADS  Google Scholar 

  16. O. V. Verkhodanov, ASP Conf. Ser. 125, 46 (1997).

  17. E. M. Sadler, R. Ricci, R. D. Ekers, J. A. Ekers, et al., Mon. Not. R. Astron. Soc. 371, 898 (2006).

    Article  ADS  Google Scholar 

  18. M. Tucci, J. A. Rubino-Martin, R. Rebolo, R. Genova-Santos, et al., Mon. Not. R. Astron. Soc. 386, 1729 (2008).

    Article  ADS  Google Scholar 

  19. K. I. Kellermann, I. I. K. Pauliny-Toth, and P. J. S. Williams, Astrophys. J. 157, 1 (1969).

    Article  ADS  Google Scholar 

  20. O. V. Verkhodanov, D. D. Kozlova, and Yu. V. Sotnikova, Astrophys. Bull. 73, 393 (2018).

    Article  ADS  Google Scholar 

  21. Y. A. Kovalev, Y. Y. Kovalev, and N. A. Nizhelsky, Publ. Astron. Soc. Jpn. 52, 1027 (2000).

    Article  ADS  Google Scholar 

  22. C. P. O’Dea, S. A. Baum, and C. Stanghellini, Astrophys. J. 380, 66 (1991).

    Article  ADS  Google Scholar 

  23. A. Capetti, R. D. Baldi, M. Brienza, R. Morganti, and G. Giovannini, Astron. Astrophys. 631, A176 (2019).

    Article  ADS  Google Scholar 

  24. D. Garofalo and C. B. Singh, Astrophys. J. 871, 259 (2019).

    Article  ADS  Google Scholar 

  25. Yu. V. Sotnikova, T. V. Mufakharov, E. K. Maiorova, M. G. Mingaliev, R. Yu. Udovitskii, N. N. Bursov, and T. A. Semenova, Astrophys. Bull. 74, 348 (2019).

    Article  ADS  Google Scholar 

  26. A. Merloni, S. Heinz, and T. di Matteo, Mon. Not. R. Astron. Soc. 345, 1057 (2003).

    Article  ADS  Google Scholar 

  27. R. A. Daly, Astrophys. J. 863, 117 (2018).

    Article  ADS  Google Scholar 

  28. D. Dicken, C. Tadhunter, R. Morganti, D. Axon, et al., Astrophys. J. 788, 98 (2014).

    Article  ADS  Google Scholar 

  29. S. W. Allen, R. J. H. Dunn, A. C. Fabian, G. B. Taylor, and C. S. Reynolds, Mon. Not. R. Astron. Soc. 372, 21 (2006).

    Article  ADS  Google Scholar 

  30. D. A. Rafferty, B. R. McNamara, P. E. J. Nulsen, and M. W. Wise, Astrophys. J. 652, 216 (2006).

    Article  ADS  Google Scholar 

  31. L. Birzan, B. R. McNamara, P. E. J. Nulsen, C. L. Carilli, and M. W. Wise, Astrophys. J. 686, 859 (2008).

    Article  ADS  Google Scholar 

  32. A. Merloni and S. Heinz, Mon. Not. R. Astron. Soc. 381, 589 (2007).

    Article  ADS  Google Scholar 

  33. R. D. Baldi, E. Torresi, G. Migliori, and B. Balmaverde, Galaxies 7, 76 (2019).

    Article  ADS  Google Scholar 

  34. P. Grandi, A. Capetti, and R. D. Baldi, Mon. Not. R. Astron. Soc. 457, 2 (2016).

    Article  ADS  Google Scholar 

  35. F. Tavecchio, C. Righi, A. Capetti, P. Grandi, and G. Ghisellini, Mon. Not. R. Astron. Soc. 475, 5529 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

Observations with SAO RAS telescopes are supported by the Ministry of Science and Higher Education of the Russian Federation. This work is supported in the framework of the State project “Science” by the Ministry of Science and Higher Education of the Russian Federation under the contract 075-15-2020-778.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Mikhailov or Yu. V. Sotnikova.

Additional information

Translated by L. Yungelson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, A.G., Sotnikova, Y.V. Radio Properties of FR0 Galaxies According to Multifrequency Measurements with RATAN-600. Astron. Rep. 65, 233–245 (2021). https://doi.org/10.1134/S1063772921040028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921040028

Navigation