Skip to main content
Log in

Spectral study of faint radio sources in ELAIS N1 field

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

Understanding the spectral properties of sources is crucial for the characterization of the radio source population. In this work, we have extensively studied the ELAIS N1 field using various low-frequency radio observations. For the first time, we presented the 1250 MHz observations of the field using the upgraded Giant Meterwave Radio Telescope (uGMRT) that reach a central off-source RMS noise of \(\sim \)12 \(\upmu \)Jy beam\(^{-1}\). A source catalog of 1086 sources is compiled at \(5\sigma \) threshold (>60 \(\upmu \)Jy) to derive the normalized differential source counts at this frequency, which is consistent with existing observations and simulations. We presented the spectral indices derived in two ways: two-point spectral indices and by fitting a power-law. The latter yielded a median \(\alpha = -0.57\pm 0.14\), and we identified nine ultra-steep spectrum sources using these spectral indices. Further, using a radio color diagram, we identified the three mega-hertz peaked spectrum (MPS) sources, while three other MPS sources are identified from the visual inspection of the spectra, the properties of which are discussed. In our study of the classified sources in the ELAIS N1 field, we presented the relationship between \(\alpha \) and z. We found no evidence of an inverse correlation between these two quantities and suggested that the nature of the radio spectrum remains independent of the large-scale properties of the galaxies that vary with redshifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://github.com/Arnab-half-blood-prince/uGMRT_Calibration_ pipeline.

  2. Common Astronomy Software Applications (https://casa.nrao.edu/).

  3. http://www.ncra.tifr.res.in/ncra/gmrt/gmrt-users/observing-help/ugmrt-primary-beam-shape.

  4. http://montage.ipac.caltech.edu/.

References

  • An F., Vaccari M., Best P. N. et al. 2023, arXiv e-prints, arXiv:2303.06941

  • An T., Baan W. A. 2012, Astrophysical Journal, 760, 77

    Article  ADS  Google Scholar 

  • Athreya R. M., Kapahi V. K. 1999, in ed Sato K., IAU Symposium, Vol. 183, Cosmological Parameters and the Evolution of the Universe, p. 251

  • Best P. N., Arts J. N., Röttgering H. J. A. et al. 2003, Monthly Notices of the Royal Astronomical Society, 346, 627

    Article  ADS  Google Scholar 

  • Best P. N., Kondapally R., Williams W. L. et al. 2023, Monthly Notices of the Royal Astronomical Society, 523, 1729

    Article  ADS  Google Scholar 

  • Bicknell G. V., Dopita M. A., O’Dea C. P. O. 1997, The Astrophysical Journal, 485, 112

    Article  ADS  Google Scholar 

  • Bicknell G. V., Mukherjee D., Wagner A. Y., Sutherland R. S., Nesvadba N. P. H. 2018, Monthly Notices of the Royal Astronomical Society, 475, 3493

    Article  ADS  Google Scholar 

  • Blundell K. M., Kuncic Z. 2007, Astrophysical Journal Letters, 668, L103

    Article  ADS  Google Scholar 

  • Blundell K. M., Rawlings S., Eales S. A., Taylor G. B., Bradley A. D. 1998, Monthly Notices of the Royal Astronomical Society, 295, 265

    Article  ADS  Google Scholar 

  • Bolton A. S., Schlegel D. J., Aubourg É. et al. 2012, The Astronomical Journal, 144, 144

    Article  ADS  Google Scholar 

  • Bonaldi A., Bonato M., Galluzzi V. et al. 2019, Monthly Notices of the Royal Astronomical Society, 482, 2

    Article  ADS  Google Scholar 

  • Bonaldi A., Bonato M., Galluzzi V. et al. 2018, Monthly Notices of the Royal Astronomical Society, 482, 2

    Article  ADS  Google Scholar 

  • Bondi M., Ciliegi P., Schinnerer E. et al. 2008, Astrophysical Journal, 681, 1129

    Article  ADS  Google Scholar 

  • Bonzini M., Padovani P., Mainieri V. et al. 2013, Monthly Notices of the Royal Astronomical Society, 436, 3759

    Article  ADS  Google Scholar 

  • Calistro R. G., Williams W. L., Hardcastle M. J. et al. 2017, Monthly Notices of the Royal Astronomical Society, 469, 3468

    Article  ADS  Google Scholar 

  • Callingham J. R., Gaensler B. M., Ekers R. D. et al. 2015, The Astrophysical Journal, 809, 168

    Article  ADS  Google Scholar 

  • Callingham J. R., Ekers R. D., Gaensler B. M. et al. 2017, Astrophysical Journal, 836, 174

    Article  ADS  Google Scholar 

  • Chakraborty A., Dutta P., Datta A., Roy N. 2020, Monthly Notices of the Royal Astronomical Society, 494, 3392

    Article  ADS  Google Scholar 

  • Chakraborty A., Roy N., Datta A. et al. 2019, Monthly Notices of the Royal Astronomical Society, 490, 243

    Article  ADS  Google Scholar 

  • Chambers K. C., Miley G. K., van Breugel W. J. M. 1990, Astrophysical Journal, 363, 21

    Article  ADS  Google Scholar 

  • Condon J. J. 1992, Annual Review of Astron and Astrophys, 30, 575

    Article  ADS  Google Scholar 

  • Coppejans R., Cseh D., Williams W. L., van Velzen S., Falcke H. 2015, Monthly Notices of the Royal Astronomical Society, 450, 1477

    Article  ADS  Google Scholar 

  • Coppejans R., Cseh D., van Velzen S. et al. 2016, Monthly Notices of the Royal Astronomical Society, 459, 2455

    Article  ADS  Google Scholar 

  • De Breuck C., Hunstead R. W., Sadler E. M., Rocca-Volmerange B., Klamer I. 2004, VizieR Online Data Catalog, J/MNRAS/347/837

  • Duncan K. J., Kondapally R., Brown M. J. I. et al. 2021, Astronomy & Astrophysics, 648, A4

    Article  Google Scholar 

  • Fabian A. C. 2012, Annual Review of Astron and Astrophys, 50, 455

    Article  ADS  Google Scholar 

  • Franzen T. M. O., Vernstrom T., Jackson C. A. et al. 2019, Publications of the Astron. Soc. of Australia, 36, e004

    Article  ADS  Google Scholar 

  • Franzen T. M. O., Banfield J. K., Hales C. A. et al. 2015, Monthly Notices of the Royal Astronomical Society, 453, 4020

    Article  ADS  Google Scholar 

  • Hale C. L., Williams W., Jarvis M. J. et al. 2019, Astronomy & Astrophysics, 622, A4

    Article  Google Scholar 

  • Hardcastle M. J., Williams W. L., Best P. N. et al. 2019, Astronomy & Astrophysics, 622, A12

    Article  Google Scholar 

  • Intema H. T., van Weeren R. J., Röttgering H. J. A., Lal D. V. 2011, Astronomy & Astrophysics, 535, A38

    Article  Google Scholar 

  • Ishwara-Chandra C. H., Taylor A. R., Green D. A. et al. 2020, Monthly Notices of the Royal Astronomical Society, 497, 5383

    Article  ADS  Google Scholar 

  • Ivison R. J., Alexander D. M., Biggs A. D. et al. 2010, Monthly Notices of the Royal Astronomical Society, 402, 245

    Article  ADS  Google Scholar 

  • Keim M. A., Callingham J. R., Röttgering H. J. A. 2019, Astronomy & Astrophysics, 628, A56

    Article  ADS  Google Scholar 

  • Knopp G. P., Chambers K. C. 1997, The Astrophysical Journal, 487, 644

    Article  ADS  Google Scholar 

  • Magnelli B., Ivison R. J., Lutz D. et al. 2015, Astronomy & Astrophysics, 573, A45

    Article  Google Scholar 

  • Mahony E. K., Morganti R., Prandoni I., van Bemmel I., LOFAR Surveys Key Science Project. 2016a, Astronomische Nachrichten, 337, 135

  • Mahony E. K., Morganti R., Prandoni I. et al. 2016, Monthly Notices of the Royal Astronomical Society, 463, 2997

    Article  ADS  Google Scholar 

  • Mandal S., Prandoni I., Hardcastle M. J. et al. 2021, Astronomy & Astrophysics, 648, A5

    Article  Google Scholar 

  • Miley G., De Breuck C. 2008, Astronomy and Astrophysics Reviews, 15, 67

    Article  ADS  Google Scholar 

  • Miller P., Rawlings S., Saunders R. 1993, Monthly Notices of the Royal Astronomical Society, 263, 425

    Article  ADS  Google Scholar 

  • Mohan N., Rafferty D. 2015, PyBDSF: Python Blob Detection and Source Finder Astrophysics Source Code Library, ascl:1502.007

  • Morabito L. K., Harwood J. J. 2018, Monthly Notices of the Royal Astronomical Society, 480, 2726

    Article  ADS  Google Scholar 

  • Murgia M., Fanti C., Fanti R. et al. 1999, Astronomy & Astrophysics, 345, 769

    ADS  Google Scholar 

  • Ocran E. F., Taylor A. R., Vaccari M., Ishwara-Chandra C. H., Prandoni I. 2020, Monthly Notices of the Royal Astronomical Society, 491, 1127

    Article  ADS  Google Scholar 

  • O’Dea C. P. 1998, Publications of the ASP, 110, 493

    Google Scholar 

  • O’Dea C. P., Baum S. A. 1997, Astronomical Journal, 113, 148

    Article  ADS  Google Scholar 

  • Offringa A. R., Smirnov O. 2017, Monthly Notices of the Royal Astronomical Society, 471, 301

    Article  ADS  Google Scholar 

  • Offringa A. R., McKinley B., Hurley-Walker N. et al. 2014, Monthly Notices of the Royal Astronomical Society, 444, 606

    Article  ADS  Google Scholar 

  • Orienti M. 2016, Astronomische Nachrichten, 337, 9

    Article  ADS  Google Scholar 

  • Orienti M., Dallacasa D., Tinti S., Stanghellini C. 2006, Astronomy & Astrophysics, 450, 959

    Article  ADS  Google Scholar 

  • Padovani P. 2016, in Active Galactic Nuclei 12: A Multi-Messenger Perspective (AGN12), p. 14

  • Padovani P., Bonzini M., Kellermann K. I. et al. 2015, Monthly Notices of the Royal Astronomical Society, 452, 1263

    Article  ADS  Google Scholar 

  • Padovani P., Mainieri V., Tozzi P. et al. 2009, Astrophysical Journal, 694, 235

    Article  ADS  Google Scholar 

  • Padovani P., Miller N., Kellermann K. I. et al. 2011, Astrophysical Journal, 740, 20

    Article  ADS  Google Scholar 

  • Panessa F., Baldi R. D., Laor A. et al. 2019, Nature Astronomy, 3, 387

    Article  ADS  Google Scholar 

  • Perley R. A., Butler B. J. 2017, The Astrophysical Journal Supplement Series, 230, 7

    Article  ADS  Google Scholar 

  • Prandoni I., de Ruiter H. R., Ricci R. et al. 2010, Astronomy & Astrophysics, 510, A42

    Article  Google Scholar 

  • Prandoni I., Guglielmino G., Morganti R. et al. 2018, Monthly Notices of the Royal Astronomical Society, 481, 4548

    Article  ADS  Google Scholar 

  • Riseley C. J., Scaife A. M. M., Hales C. A. et al. 2016, Monthly Notices of the Royal Astronomical Society, 462, 917

    Article  ADS  Google Scholar 

  • Roettgering H. J. A., Lacy M., Miley G. K., Chambers K. C., Saunders R. 1994, A &AS, 108, 79

    ADS  Google Scholar 

  • Roettgering H. J. A., van Ojik R., Miley G. K. et al. 1997, Astronomy & Astrophysics, 326, 505

    ADS  Google Scholar 

  • Rowan-Robinson M., Gonzalez-Solares E., Vaccari M., Marchetti L. 2013, Monthly Notices of the Royal Astronomical Society, 428, 1958

  • Sabater J., Best P. N., Tasse C. et al. 2021, Astronomy & Astrophysics, 648, A2

    Article  Google Scholar 

  • Saxena A., Röttgering H. J. A., Duncan K. J. et al. 2019, Monthly Notices of the Royal Astronomical Society, 489, 5053

  • Singh V., Chand H. 2018, Monthly Notices of the Royal Astronomical Society, 480, 1796

    Article  ADS  Google Scholar 

  • Singh V., Beelen A., Wadadekar Y. et al. 2014, VizieR Online Data Catalog, J/A+A/569/A52

  • Sinha A., Basu A., Datta A., Chakraborty A. 2022, Monthly Notices of the Royal Astronomical Society, 514, 4343

    Article  ADS  Google Scholar 

  • Smolčić V., Schinnerer E., Scodeggio M. et al. 2008, ApJS, 177, 14

    Article  ADS  Google Scholar 

  • Smolčić V., Delvecchio I., Zamorani G. et al. 2017, Astronomy & Astrophysics, 602, A2

    Article  Google Scholar 

  • Sopp H. M., Alexander P. 1991, Monthly Notices of the Royal Astronomical Society, 251, 112

    Article  ADS  Google Scholar 

  • van Breugel W., Miley G., Heckman T. 1984, Astronomical Journal, 89, 5

    Article  ADS  Google Scholar 

  • White R. L., Becker R. H., Helfand D. J., Gregg M. D. 1997, Astrophysical Journal, 475, 479

    Article  ADS  Google Scholar 

  • Wilkinson P. N., Polatidis A. G., Readhead A. C. S., Xu W., Pearson T. J. 1994, Astrophysical Journal Letters, 432, L87

  • Williams W. L., Intema H. T., Röttgering H. J. A. 2013, Astronomy & Astrophysics, 549, A55

    Article  ADS  Google Scholar 

  • Williams W. L., van Weeren R. J., Rãttgering H. J. A. et al. 2016, Monthly Notices of the Royal Astronomical Society, 460, 2385

    Article  ADS  Google Scholar 

  • Wilman R. J., Miller L., Jarvis M. J. et al. 2008, Monthly Notices of the Royal Astronomical Society, 388, 1335

    ADS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for their comments on the manuscript. We further would like to thank Arnab Chakraborty for his helpful suggestions. AS would like to thank DST for INSPIRE fellowship. We thank the staff of GMRT for making this observation possible. GMRT is run by National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akriti Sinha.

Appendices

Appendix A. Positional and flux accuracies

Here, we compare the uGMRT 1.25 GHz catalog to the other radio catalogs in the literature. We have used the 1.4 GHz Faint Images of the Radio Sky at Twenty centimeters (FIRST) survey (White et al. 1997), uGMRT catalog at 400 MHz from (for details, see Section 4, Chakraborty et al. 2019) the GMRT catalog at 610 MHz by Ishwara-Chandra et al. (2020) with the resolution of \(6''\). We used a search radius of \(2''.0\) to identify a cross-match in other catalogs. For the positional and flux accuracy analysis, we have applied a sample selection criteria of sources following Williams et al. (2016): High signal-to-noise ratio (\({>}10\)) sources, compact sources with size less than the resolution of the catalog and isolated sources for which the minimum distance between the two sources are greater than twice of the resolution.

Fig. 11
figure 11

Spectra for the USS sources in the ELAIS N1 field. The source IDs mentioned here are from the 400 MHz uGMRT catalog.

1.1 Appendix A.1 Positional accuracy

The positional offsets in right ascension (RA) and declination (DEC) for the uGMRT sample at 1.25 GHz are measured as:

$$\begin{aligned}&\delta _\textrm{RA} = \textrm{RA}_\textrm{uGMRT} - \textrm{RA}_\textrm{FIRST},\end{aligned}$$
(A1)
$$\begin{aligned}&\delta _\textrm{DEC} = \textrm{DEC}_\textrm{uGMRT} - \textrm{DEC}_\textrm{FIRST}. \end{aligned}$$
(A2)

The FIRST catalog has positional accuracy better than \(1''\) with a resolution of \({\sim }5''\). We measured the median values in the deviation of RA and DEC using the FIRST catalog as \(-0.092''\) and \(-0.076''\), respectively. Figure 10(left) presents the offsets in RA and DEC for the uGMRT source catalog compared to the other catalogs, along with their histograms. The median offsets in RA and DEC, as measured from the GMRT 610 MHz and the uGMRT 400 MHz catalogs, are −0.07, −0.16 and −0.43, 0.59, respectively. It should be noted that the resolution of our catalog \({\sim }2''\) is better than the resolution of other catalogs \(\sim \)5\(''\)–6\(''\), and the median offset with the FIRST catalog is \({<}0.1''\). Hence, we do not apply any corrections in the source positions in our uGMRT catalog.

1.2 Appendix A.2 Flux accuracy

Our uGMRT 1.25 GHz catalog was generated using Perley & Butler (2017) flux scales. Each catalog will have different flux scales, therefore, we have made sure to convert them to the flux scales used in our work. We measured the ratio of the integrated flux density at 1.25 GHz with the other catalogs also scaled to 1.25 GHz using a constant spectral index value of −0.7. This ratio is defined as \(S_{\mathrm{1.25~GHz}}/ S_\textrm{other}\). In Figure 10(right), we show the comparison of \(S_{\mathrm{1.25 \ GHz}}\) with \(S_{\textrm{other}}\) and no significant deviation is observed from the \(S_{\mathrm{1.25 \ GHz}}/S_{\textrm{other}}=1\) line (black dashed line). The median \(S_{\mathrm{1.25~GHz}}/S_\textrm{other}\) ratio as derived using the FIRST, uGMRT 400 MHz and GMRT 610 MHz catalogs are \(0.99^{0.19}_{-0.37}\), \(1.11_{-0.51}^{0.25}\) and \(1.10_{-0.9}^{0.32}\), respectively. The errors quoted here are from the 16th and 84th percentiles. The median of the ratio is \(\sim \)1 for these cases and therefore, we do not suggest any correction for systematic offsets.

Appendix B. Spectra of USS sample

The spectra of the USS sources are shown in Figure 11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, A., Mangla, S. & Datta, A. Spectral study of faint radio sources in ELAIS N1 field. J Astrophys Astron 44, 88 (2023). https://doi.org/10.1007/s12036-023-09978-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12036-023-09978-0

Keywords

Navigation