Skip to main content
Log in

Bivalves Humoral Immunity: Key Molecules and Their Functions

  • REVIEW
  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

This review presents the basic concepts and knowledge about the immunity of Bivalvia with an emphasis on humoral factors and a more detailed analysis of carbohydrate-binding and effector molecules, an assessment of the influence of environmental factors on their activity, and a description of application of some of them. Cellular responses and hemocytes are briefly considered as a key component of the bivalve immune system and the main source of protective molecules. Various types of classification of humoral immunity factors are provided with their further description for groups based on functional activity. Carbohydrate-binding proteins that recognize foreign components and play the role of agglutinins and opsonins, general regulatory mechanisms and signal molecules, as well as effector molecules such as lysins, antimicrobial peptides, etc. are considered in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Ratcliffe, N.A., Rowley, A.F., Fitzgerald, S.W., and Rhodes, C.P., Invertebrate immunity: Basic concepts and recent advances, in International Review of Cytology, Bourne, G.H., Ed., New York: Academic, 1985, pp. 183–350.

    Google Scholar 

  2. Song, L., Wang, L., Qiu, L., and Zhang, H., Bivalve immunity, in Invertebrate Immunity, Söderhäll, K., Ed., Boston: Springer, 2010, pp. 44–65.

    Google Scholar 

  3. Vasta, G.R., Lectins as innate immune recognition factors: Structural, functional, and evolutionary aspects, in The Evolution of the Immune System, Malagoli, D., Ed., Academic, 2016, pp. 205–224.

    Google Scholar 

  4. Jack, R. and Du Pasquier, L., Innate immunity, evolutionary concepts, in Immunology, Cham: Springer, 2019, pp. 33–69.

    Google Scholar 

  5. Gerdol, M., Gomez-Chiarri, M., Castillo, M.G., Figueras, A., Fiorito, G., Moreira, R., Novoa, B., Pallavicini, A., Ponte, G., and Roumbedakis, K., Immunity in molluscs: Recognition and effector mechanisms, with a focus on Bivalvia, in Advances in Comparative Immunology, Cooper, E., Ed., Cham: Springer, 2018, pp. 225–341.

    Google Scholar 

  6. Loker, E.S. and Bayne, C.J., Molluscan immunobiology: Challenges in the anthropocene epoch, in Advances in Comparative Immunology, Cooper, E., Ed., Cham: Springer, 2018, pp. 343–407.

    Google Scholar 

  7. Criscitiello, M.F. and de Figueiredo, P., Fifty shades of immune defense, PloS Pathog., 2013, vol. 9, e1003110. https://doi.org/10.1371/journal.ppat.1003110

    Article  Google Scholar 

  8. Mafra, L.L., Bricelj, V.M., amd Fennel, K., Domoic acid uptake and elimination kinetics in oysters and mussels in relation to body size and anatomical distribution of toxin, Aquat. Toxicol., 2010, vol. 100, pp. 17–29. https://doi.org/10.1016/j.aquatox.2010.07.002

    Article  Google Scholar 

  9. Ben-Horin, T., Bidegain, G., Huey, L., Narvaez, D.A., and Bushek, D., Parasite transmission through suspension feeding, J. Invertebr. Pathol., 2015, vol. 131, pp. 155–176. https://doi.org/10.1016/j.jip.2015.07.006

    Article  Google Scholar 

  10. Allam, B. and Pales Espinosa, E., Bivalve immunity and response to infections: Are we looking at the right place?, Fish Shellfish Immunol., 2016, vol. 53, pp. 4–12. https://doi.org/10.1016/j.fsi.2016.03.037

    Article  Google Scholar 

  11. Allam, B. and Raftos, D., Immune responses to infectious diseases in bivalves, J. Invertebr. Pathol., 2015, vol. 131, pp. 121–136. https://doi.org/10.1016/j.jip.2015.05.005

    Article  Google Scholar 

  12. Zannella, C., Mosca, F., Mariani, F., Franci, G., Folliero, V., Galdiero, Marilena, Tiscar, P.G., and Galdiero, M., Microbial diseases of bivalve mollusks: Infections, immunology and antimicrobial defense, Mar. Drugs, 2017, vol. 15, no. 6, 182. https://doi.org/10.3390/md15060182

  13. Zhang, T., Qiu, L., Sun, Z., Wang, L., Zhou, Z., Liu, R., Yue, F., Sun, R., and Song, L., The specifically enhanced cellular immune responses in Pacific oyster (Crassostrea gigas) against secondary challenge with Vibrio splendidus, Dev. Comp. Immunol., 2014, vol. 45, pp. 141–150. https://doi.org/10.1016/j.dci.2014.02.015

    Article  Google Scholar 

  14. Wang, Lingling, Yue, F., Song, X., and Song, L., Maternal immune transfer in mollusc, Dev. Comp. Immunol., 2015, vol. 48, pp. 354–359. https://doi.org/10.1016/j.dci.2014.05.010

    Article  Google Scholar 

  15. Green, T.J., Raftos, D., Speck, P., and Montagnani, C., Antiviral immunity in marine molluscs, J. Gen. Virol., 2015, vol. 96, pp. 2471–2482. https://doi.org/10.1099/jgv.0.000244

    Article  Google Scholar 

  16. Pinaud, S., Portela, J., Duval, D., Nowacki, F.C., Olive, M.-A., Allienne, J.-F., Galinier, R., Dheilly, N.M., Kieffer-Jaquinod, S., Mitta, G., Théron, A., and Gourbal, B., A shift from cellular to humoral responses contributes to innate immune memory in the vector snail Biomphalaria glabrata, PloS Pathog., 2016, vol. 12, e1005361. https://doi.org/10.1371/journal.ppat.1005361

    Article  Google Scholar 

  17. Wang, H., Song, L., Li, C., Zhao, J., Zhang, H., Ni, D., and Xu, W., Cloning and characterization of a novel C-type lectin from Zhikong scallop Chlamys farreri, Mol. Immunol., 2007, vol. 44, pp. 722–731. https://doi.org/10.1016/j.molimm.2006.04.015

    Article  Google Scholar 

  18. Lafont, M., Petton, B., Vergnes, A., Pauletto, M., Segarra, A., Gourbal, B., and Montagnani, C., Long-lasting antiviral innate immune priming in the Lophotrochozoan Pacific oyster, Crassostrea gigas, Sci. Rep., 2017, vol. 7, 13143. https://doi.org/10.1038/s41598-017-13564-0

    Article  Google Scholar 

  19. Oubella, R., Maes, P., Paillard, C., and Auffret, M., Experimentally induced variation in hemocyte density for Ruditapes philippinarum and R. decussatus (Mollusca, Bivalvia), Dis. Aquat. Org., 1993, vol. 15, pp. 193–197.

    Article  Google Scholar 

  20. Santarem, M., Robledo, J., and Figueras, A., Seasonal changes in hemocytes and serum defense factors in the blue mussel Mytilus galloprovincialis, Dis. Aquat. Org., 1994, vol. 18, pp. 217–222. https://doi.org/10.3354/dao018217

    Article  Google Scholar 

  21. Carballal, Villalba, Lopez, Seasonal variation and effects of age, food availability, size, gonadal development, and parasitism on the hemogram of Mytilus galloprovincialis, J. Invertebr. Pathol., 1998, vol. 72, pp. 304–312. https://doi.org/10.1006/jipa.1998.4779

    Article  Google Scholar 

  22. Allam, B., Paillard, C., and Ford, S.E., Pathogenicity of Vibrio tapetis, the etiological agent of brown ring disease in clams, Dis. Aquat. Org., 2002, vol. 48, pp. 221–231. https://doi.org/10.3354/dao048221

    Article  Google Scholar 

  23. Anisimova, A.A., Morphofunctional parameters of hemocytes in the assessment of the physiological status of bivalves, Russ. J. Mar. Biol., 2013, vol. 39, pp. 381–391. https://doi.org/10.1134/S1063074013060023

    Article  Google Scholar 

  24. Wang, L., Song, X., and Song, L., The oyster immunity, Dev. Comp. Immunol., 2018, vol. 80, pp. 99–118. https://doi.org/10.1016/j.dci.2017.05.025

    Article  Google Scholar 

  25. Dam, T.K., Sarkar, M., Ghosal, J., and Choudhury, A., A novel galactosyl-binding lectin from the plasma of the blood clam, Anadara granosa (L) and a study of its combining site, Mol. Cell. Biochem., 1992, vol. 117, pp. 1–9. https://doi.org/10.1007/BF00230405

    Article  Google Scholar 

  26. Romanenko, L.A., Uchino, M., Kalinovskaya, N.I., and Mikhailov, V.V., Isolation, phylogenetic analysis and screening of marine mollusc-associated bacteria for antimicrobial, hemolytic and surface activities, Microbiol. Res., 2008, vol. 163, pp. 633–644. https://doi.org/10.1016/j.micres.2006.10.001

    Article  Google Scholar 

  27. Chen, Y., Li, C., Zhu, J., Xie, W., Hu, X., Song, L., Zi, J., and Yu, R., Purification and characterization of an antibacterial and anti-inflammatory polypeptide from Arca subcrenata, Int. J. Biol. Macromol., 2017, vol. 96, pp. 177–184. https://doi.org/10.1016/j.ijbiomac.2016.11.082

    Article  Google Scholar 

  28. Balseiro, P., Falcó, A., Romero, A., Dios, S., Martínez-López, A., Figueras, A., Estepa, A., and Novoa, B., Mytilus galloprovincialis myticin C: a chemotactic molecule with antiviral activity and immunoregulatory properties, PLoS One, 2011, vol. 6, e23140. https://doi.org/10.1371/journal.pone.0023140

    Article  Google Scholar 

  29. Zhang, L., Li, L., Guo, X., Litman, G.W., Dishaw, L.J., and Zhang, G., Massive expansion and functional divergence of innate immune genes in a protostome, Sci. Rep., 2015, vol. 5, 8693. https://doi.org/10.1038/srep08693

    Article  Google Scholar 

  30. Sharon, N. and Lis, H., Lectins, Dordrecht: Springer, 2007.

    Book  Google Scholar 

  31. Vasta, G.R., Ahmed, H., Tasumi, S., Odom, E.W., and Saito, K., Biological roles of lectins in innate immunity: molecular and structural basis for diversity in self/non-self recognition, Adv. Exp. Med. Biol., 2007, vol. 598, pp. 389–406. https://doi.org/10.1007/978-0-387-71767-8_27

    Article  Google Scholar 

  32. Fujita, T., Matsushita, M., and Endo, Y., The lectin-complement pathway—its role in innate immunity and evolution, Immunol. Rev., 2004, vol. 198, pp. 185–202. https://doi.org/10.1111/j.0105-2896.2004.0123.x

    Article  Google Scholar 

  33. Vasta, G.R. and Ahmed, H., Animal Lectins: A Functional View, Boca Raton: CRC Press, 2008.

    Book  Google Scholar 

  34. Drickamer, K., Two distinct classes of carbohydrate-recognition domains in animal lectins., J. Biol. Chem., 1988, vol. 263, pp. 9557–9560. https://doi.org/10.1016/S0021-9258(19)81549-1

    Article  Google Scholar 

  35. Zelensky, A.N., Gready, J.E., and Gready J.E. The C-type lectin-like domain superfamily, FEBS J., 2005, vol. 272, pp. 6179–6217. https://doi.org/10.1111/j.1742-4658.2005.05031.x

    Article  Google Scholar 

  36. Pees, B., Yang, W., Zárate-Potes, A., Schulenburg, H., and Dierking, K., High innate immune specificity through diversified C-type lectin-like domain proteins in invertebrates, J. Innate Immun., 2016, vol. 8, pp. 129–142. https://doi.org/10.1159/000441475

    Article  Google Scholar 

  37. Zhao, L.-L., Wang, Y.-Q., Dai, Y.-J., Zhao, L.-J., Qin, Q., Lin, L., Ren, Q., and Lan, J.-F., A novel C-type lectin with four CRDs is involved in the regulation of antimicrobial peptide gene expression in Hyriopsis cumingii, Fish Shellfish Immunol., 2016, vol. 55, pp. 339–347. https://doi.org/10.1016/j.fsi.2016.06.007

    Article  Google Scholar 

  38. Martins, E., Figueras, A., Novoa, B., Santos, R.S., Moreira, R., and Bettencourt, R., Comparative study of immune responses in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus and the shallow-water mussel Mytilus galloprovincialis challenged with Vibrio bacteria, Fish Shellfish Immunol., 2014, vol. 40, pp. 485–499. https://doi.org/10.1016/j.fsi.2014.07.018

    Article  Google Scholar 

  39. Zheng, P., Wang, H., Zhao, J., Song, L., Qiu, L., Dong, C., Wang, B., Gai, Y., Mu, C., Li, C., Ni, D., and Xing, K., A lectin (CfLec-2) aggregating Staphylococcus haemolyticus from scallop Chlamys farreri, Fish Shellfish Immunol., 2008, vol. 24, pp. 286–293. https://doi.org/10.1016/j.fsi.2007.11.014

    Article  Google Scholar 

  40. Zhu, L., Song, L., Xu, W., and Qian, P.-Y., Molecular cloning and immune responsive expression of a novel C-type lectin gene from bay scallop Argopecten irradians, Fish Shellfish Immunol., 2008, vol. 25, pp. 231–238. https://doi.org/10.1016/j.fsi.2008.05.004

    Article  Google Scholar 

  41. Jing, X., Espinosa, E.P., Perrigault, M., and Allam, B., Identification, molecular characterization and expression analysis of a mucosal C-type lectin in the eastern oyster, Crassostrea virginica, Fish Shellfish Immunol., 2011, vol. 30, pp. 851–858. https://doi.org/10.1016/j.fsi.2011.01.007

    Article  Google Scholar 

  42. Huang, M., Song, X., Zhao, J., Mu, C., Wang, L., Zhang, H., Zhou, Z., Liu, X., and Song, L., A C-type lectin (AiCTL-3) from bay scallop Argopecten irradians with mannose/galactose binding ability to bind various bacteria, Gene, 2013, vol. 531, pp. 31–38. https://doi.org/10.1016/j.gene.2013.08.042

    Article  Google Scholar 

  43. Mu, C., Chen, L., Zhao, J., and Wang, C., Molecular cloning and expression of a C-type lectin gene from Venerupis philippinarum, Mol. Biol. Rep., 2014, vol. 41, pp. 139–144. https://doi.org/10.1007/s11033-013-2846-2

    Article  Google Scholar 

  44. Huang, M., Zhang, H., Jiang, S., Wang, L., Liu, R., Yi, Q., and Song, L., An EPD/WSD motifs containing C-type lectin from Argopectens irradians recognizes and binds microbes with broad spectrum, Fish Shellfish Immunol., 2015, vol. 43, pp. 287–293. https://doi.org/10.1016/j.fsi.2014.12.035

    Article  Google Scholar 

  45. Yang, J., Huang, M., Zhang, H., Wang, Lingling, Wang, H., Wang, Leilei, Qiu, L., and Song, L., CfLec-3 from scallop: an entrance to non-self recognition mechanism of invertebrate C-type lectin, Sci. Rep., 2015, vol. 5, 10068. https://doi.org/10.1038/srep10068

    Article  Google Scholar 

  46. Li, H., Zhang, H., Jiang, S., Wang, W., Xin, L., Wang, H., Wang, L., and Song, L., A single-CRD C-type lectin from oyster Crassostrea gigas mediates immune recognition and pathogen elimination with a potential role in the activation of complement system, Fish Shellfish Immunol., 2015, vol. 44, pp. 566–575. https://doi.org/10.1016/j.fsi.2015.03.011

    Article  Google Scholar 

  47. Wang, Lingling, Zhang, H., Wang, Leilei, Zhang, D., Lv, Z., Liu, Z., Wang, W., Zhou, Z., Qiu, L., Wang, H., Li, J., and Song, L., The RNA-seq analysis suggests a potential multi-component complement system in oyster Crassostrea gigas, Dev. Comp. Immunol., 2017, vol. 76, pp. 209–219. https://doi.org/10.1016/j.dci.2017.06.009

    Article  Google Scholar 

  48. Vasta, G.R., Ahmed, H., Nita-Lazar, M., Banerjee, A., Pasek, M., Shridhar, S., Guha, P., and Fernández-Robledo, J.A., Galectins as self/non-self recognition receptors in innate and adaptive immunity: an unresolved paradox, Front. Immunol., 2012, vol. 3, pp. 199. https://doi.org/10.3389/fimmu.2012.00199

    Article  Google Scholar 

  49. Vasta, G.R., Roles of galectins in infection, Nat. Rev. Microbiol., 2009, vol. 7, pp. 424–438. https://doi.org/10.1038/nrmicro2146

    Article  Google Scholar 

  50. Vasta, G.R., Feng, C., Bianchet, M.A., Bachvaroff, T.R., and Tasumi, S., Structural, functional, and evolutionary aspects of galectins in aquatic mollusks: From a sweet tooth to the Trojan horse, Fish Shellfish Immunol., 2015, vol. 46, pp. 94–106. https://doi.org/10.1016/j.fsi.2015.05.012

    Article  Google Scholar 

  51. Feng, C., Ghosh, A., Amin, M.N., Giomarelli, B., Shridhar, S., Banerjee, A., Fernández-Robledo, J.A., Bianchet, M.A., Wang, L.-X., Wilson, I.B.H., and Vasta, G.R., The galectin CvGal1 from the eastern oyster (Crassostrea virginica) binds to blood group A oligosaccharides on the hemocyte surface, J. Biol. Chem., 2013, vol. 288, pp. 24394–24409. https://doi.org/10.1074/jbc.M113.476531

    Article  Google Scholar 

  52. Feng, C., Ghosh, A., Amin, M.N., Bachvaroff, T.R., Tasumi, S., Pasek, M., Banerjee, A., Shridhar, S., Wang, L.-X., Bianchet, M.A., and Vasta, G.R., Galectin CvGal2 from the Eastern oyster (Crassostrea virginica) displays unique specificity for ABH blood group oligosaccharides and differentially recognizes sympatric Perkinsus species, Biochemistry, 2015, vol. 54, pp. 4711–4730. https://doi.org/10.1021/acs.biochem.5b00362

    Article  Google Scholar 

  53. Kurz, S., Jin, C., Hykollari, A., Gregorich, D., Giomarelli, B., Vasta, G.R., Wilson, I.B.H., and Paschinger, K., Hemocytes and plasma of the eastern oyster (Crassostrea virginica) display a diverse repertoire of sulfated and blood group A-modified N-glycans, J. Biol. Chem., 2013, vol. 288, pp. 24410–24428. https://doi.org/10.1074/jbc.M113.478933

    Article  Google Scholar 

  54. Tasumi, S. and Vasta, G.R., A galectin of unique domain organization from hemocytes of the Eastern oyster (Crassostrea virginica) is a receptor for the protistan parasite Perkinsus marinus, J. Immunol., 2007, vol. 179, pp. 3086–3098. https://doi.org/10.4049/jimmunol.179.5.3086

    Article  Google Scholar 

  55. Yamaura, K., Takahashi, K.G., and Suzuki, T., Identification and tissue expression analysis of C-type lectin and galectin in the Pacific oyster, Crassostrea gigas, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2008, vol. 149, pp. 168–175. https://doi.org/10.1016/j.cbpb.2007.09.004

    Article  Google Scholar 

  56. Yoshino, T.P., Dinguirard, N., Kunert, J., and Hokke, C.H., Molecular and functional characterization of a tandem-repeat galectin from the freshwater snail Biomphalaria glabrata, intermediate host of the human blood fluke Schistosoma mansoni, Gene, 2008, vol. 411, pp. 46–58. https://doi.org/10.1016/j.gene.2008.01.003

    Article  Google Scholar 

  57. Song, X., Zhang, H., Zhao, J., Wang, L., Qiu, Limei, Mu, C., Liu, X., Qiu, Lihua, and Song, L., An immune responsive multidomain galectin from bay scallop Argopectens irradians, Fish Shellfish Immunol., 2010, vol. 28, pp. 326–332. https://doi.org/10.1016/j.fsi.2009.11.016

    Article  Google Scholar 

  58. Zhang, D., Jiang, S., Hu, Y., Cui, S., Guo, H., Wu, K., Li, Y., and Su, T., A multidomain galectin involved in innate immune response of pearl oyster Pinctada fucata, Dev. Comp. Immunol., 2011, vol. 35, pp. 1–6. https://doi.org/10.1016/j.dci.2010.08.007

    Article  Google Scholar 

  59. Bao, Y., Shen, H., Zhou, H., Dong, Y., and Lin, Z., A tandem-repeat galectin from blood clam Tegillarca granosa and its induced mRNA expression response against bacterial challenge, Genes Genomics, 2013, vol. 35, pp. 733–740.

    Article  Google Scholar 

  60. Dheilly, N.M., Duval, D., Mouahid, G., Emans, R., Allienne, J.-F., Galinier, R., Genthon, C., Dubois, E., Du Pasquier, L., Adema, C.M., Grunau, C., Mitta, G., and Gourbal, B., A family of variable immunoglobulin and lectin domain containing molecules in the snail Biomphalaria glabrata, Dev. Comp. Immunol., 2015, vol. 48, pp. 234–243. https://doi.org/10.1016/j.dci.2014.10.009

    Article  Google Scholar 

  61. Bai, Z., Zhao, L., Chen, X., Li, Q., and Li, J., A galectin from Hyriopsis cumingii involved in the innate immune response against to pathogenic microorganism and its expression profiling during pearl sac formation, Fish Shellfish Immunol., 2016, vol. 56, pp. 127–135. https://doi.org/10.1016/j.fsi.2016.07.006

    Article  Google Scholar 

  62. Cummings, R.D. and Schnaar, R.L., R-Type Lectins, in Essentials of Glycobiology, Varki, A., Ed., New York: Cold Spring Harbor Laboratory, 2015,

    Google Scholar 

  63. Jao, M., Lubkowski, J., O’Keefe, B.R., and Wlodawer, A., Structure of a lectin from the sea mussel Crenomytilus grayanus (CGL), Acta Crystallogr., Sect. F: Struct. Biol. Commun., 2015, vol. 71, pp. 1429–1436. https://doi.org/10.1107/S2053230X15019858

    Article  Google Scholar 

  64. Chernikov, O., Kuzmich, A., Chikalovets, I., Molchanova, V., and Hua, K.-F., Lectin CGL from the sea mussel Crenomytilus grayanus induces Burkitt’s lymphoma cells death via interaction with surface glycan, Int. J. Biol. Macromol., 2017, vol. 104, pp. 508–514. https://doi.org/10.1016/j.ijbiomac.2017.06.074

    Article  Google Scholar 

  65. Chernikov, O.V., Wong, W.-T., Li, L.-H., Chikalovets, I.V., Molchanova, V.I., Wu, S.-H., Liao, J.-H., and Hua, K.-F., A GalNAc/Gal-specific lectin from the sea mussel Crenomytilus grayanus modulates immune response in macrophages and in mice, Sci. Rep., 2017, vol. 7, pp. 6315. https://doi.org/10.1038/s41598-017-06647-5

    Article  Google Scholar 

  66. Hasan, I., Gerdol, M., Fujii, Y., Rajia, S., Koide, Y., Yamamoto, D., Kawsar, S.M.A., and Ozeki, Y., cDNA and gene structure of MytiLec-1, a bacteriostatic R-Type lectin from the Mediterranean mussel (Mytilus galloprovincialis), Mar. Drugs, 2016, vol. 14, no. 5, 92. https://doi.org/10.3390/md14050092

  67. Terada, D., Kawai, F., Noguchi, H., Unzai, S., Hasan, I., Fujii, Y., Park, S.-Y., Ozeki, Y., and Tame, J.R.H., Crystal structure of MytiLec, a galactose-binding lectin from the mussel Mytilus galloprovincialis with cytotoxicity against certain cancer cell types, Sci. Rep., 2016, vol. 6, 28344. https://doi.org/10.1038/srep28344

    Article  Google Scholar 

  68. Chikalovets, I.V., Kovalchuk, S.N., Litovchenko, A.P., Molchanova, V.I., Pivkin, M.V., and Chernikov, O.V., A new Gal/GalNAc-specific lectin from the mussel Mytilus trossulus: Structure, tissue specificity, antimicrobial and antifungal activity, Fish Shellfish Immunol., 2016, vol. 50, pp. 27–33. https://doi.org/10.1016/j.fsi.2016.01.020

    Article  Google Scholar 

  69. García-Maldonado, E., Cano-Sánchez, P., and Hernández-Santoyo, A., Molecular and functional characterization of a glycosylated Galactose-Binding lectin from Mytilus californianus, Fish Shellfish Immunol., 2017, vol. 66, pp. 564–574. https://doi.org/10.1016/j.fsi.2017.05.057

    Article  Google Scholar 

  70. Bianchet, M.A., Odom, E.W., Vasta, G.R., and Amzel, L.M., A novel fucose recognition fold involved in innate immunity, Nat. Struct. Biol., 2002, vol. 9, pp. 628–634. https://doi.org/10.1038/nsb817

    Article  Google Scholar 

  71. Odom, E.W. and Vasta, G.R., Characterization of a binary tandem domain F-type lectin from striped bass (Moronesaxatilis), J. Biol. Chem., 2006, vol. 281, pp. 1698–1713. https://doi.org/10.1074/jbc.M507652200

    Article  Google Scholar 

  72. Bianchet, M.A., Odom, E.W., Vasta, G.R., and Amzel, L.M., Structure and specificity of a binary tandem domain F-lectin from striped bass (Morone saxatilis), J. Mol. Biol., 2010, vol. 401, pp. 239–252. https://doi.org/10.1016/j.jmb.2010.06.018

    Article  Google Scholar 

  73. Vasta, G.R., Ahmed, H., Bianchet, M.A., Fernández-Robledo, J.A., and Amzel, L.M., Diversity in recognition of glycans by F-type lectins and galectins: Molecular, structural, and biophysical aspects, Ann. N. Y. Acad. Sci., 2012, vol. 1253, pp. E14–26. https://doi.org/10.1111/j.1749-6632.2012.06698.x

    Article  Google Scholar 

  74. Bishnoi, R., Khatri, I., Subramanian, S., and Ramya, T.N.C., Prevalence of the F-type lectin domain, Glycobiology, 2015, vol. 25, pp. 888–901. https://doi.org/10.1093/glycob/cwv029

    Article  Google Scholar 

  75. Springer, S.A., Moy, G.W., Friend, D.S., Swanson, W.J., and Vacquier, V.D., Oyster sperm bindin is a combinatorial fucose lectin with remarkable intra-species diversity, Int. J. Dev. Biol., 2008, vol. 52, pp. 759–768. https://doi.org/10.1387/ijdb.082581ss

    Article  Google Scholar 

  76. Moy, G.W., Springer, S.A., Adams, S.L., Swanson, W.J., and Vacquier, V.D., Extraordinary intraspecific diversity in oyster sperm bindin, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, pp. 1993–1998. https://doi.org/10.1073/pnas.0711862105

    Article  Google Scholar 

  77. Moy, G.W. and Vacquier, V.D., Bindin genes of the Pacific oyster Crassostrea gigas, Gene, 2008, vol. 423, pp. 215–220. https://doi.org/10.1016/j.gene.2008.07.005

    Article  Google Scholar 

  78. Wang, A., Wang, Y., Gu, Z., Li, S., Shi, Y., and Guo, X., Development of expressed sequence tags from the pearl oyster, Pinctada martensii Dunker, Mar. Biotechnol., 2011, vol. 13, pp. 275–283. https://doi.org/10.1007/s10126-010-9296-9

    Article  Google Scholar 

  79. Arivalagan, J., Marie, B., Sleight, V.A., Clark, M.S., Berland, S., and Marie, A., Shell matrix proteins of the clam, Mya truncata: Roles beyond shell formation through proteomic study, Mar. Genomics, 2016, vol. 27, pp. 69–74. https://doi.org/10.1016/j.margen.2016.03.005

    Article  Google Scholar 

  80. Gestal, C., Pallavicini, A., Venier, P., Novoa, B., and Figueras, A., MgC1q, a novel C1q-domain-containing protein involved in the immune response of Mytilus galloprovincialis, Dev. Comp. Immunol., 2010, vol. 34, pp. 926–934. https://doi.org/10.1016/j.dci.2010.02.012

    Article  Google Scholar 

  81. Gerdol, M., Manfrin, C., De Moro, G., Figueras, A., Novoa, B., Venier, P., and Pallavicini, A., The C1q domain containing proteins of the Mediterranean mussel Mytilus galloprovincialis: A widespread and diverse family of immune-related molecules, Dev. Comp. Immunol., 2011, vol. 35, pp. 635–643. https://doi.org/10.1016/j.dci.2011.01.018

    Article  Google Scholar 

  82. Takeuchi, T., Koyanagi, R., Gyoja, F., et al., Bivalve-specific gene expansion in the pearl oyster genome: Implications of adaptation to a sessile lifestyle, Zool. Lett., 2016, vol. 2, 3. https://doi.org/10.1186/s40851-016-0039-2

    Article  Google Scholar 

  83. Gerdol, M., Venier, P., and Pallavicini, A., The genome of the Pacific oyster Crassostrea gigas brings new insights on the massive expansion of the C1q gene family in Bivalvia, Dev. Comp. Immunol., 2015, vol. 49, pp. 59–71. https://doi.org/10.1016/j.dci.2014.11.007

    Article  Google Scholar 

  84. Sun, Y., Zhou, Z., Wang, L., Yang, C., Jianga, S., and Song, L., The immunomodulation of a novel tumor necrosis factor (CgTNF-1) in oyster Crassostrea gigas, Dev. Comp. Immunol., 2014, vol. 45, pp. 291–299. https://doi.org/10.1016/j.dci.2014.03.007

    Article  Google Scholar 

  85. Powell, D., Subramanian, S., Suwansa-ard, S., Zhao, M., O’Connor, W., Raftos, D., and Elizur, A., The genome of the oyster Saccostrea offers insight into the environmental resilience of bivalves, DNA Res., 2018, vol. 25, pp. 655–665. https://doi.org/10.1093/dnares/dsy032

    Article  Google Scholar 

  86. Gerdol, M., Greco, S., and Pallavicini, A., Extensive tandem duplication events drive the expansion of the C1q-domain-containing gene family in Bivalves, Mar. Drugs, 2019, vol. 17, no. 10, 583. https://doi.org/10.3390/md17100583

  87. Mun, S., Kim, Y.-J., Markkandan, K., et al., The Whole-genome and transcriptome of the Manila clam (Ruditapes philippinarum), Genome Biol. Evol., 2017, vol. 9, pp. 1487–1498. https://doi.org/10.1093/gbe/evx096

    Article  Google Scholar 

  88. Xu, T., Xie, J., Li, J., Luo, M., Ye, S., and Wu, X., Identification of expressed genes in cDNA library of hemocytes from the RLO-challenged oyster, Crassostrea ariakensis Gould with special functional implication of three complement-related fragments (CaC1q1, CaC1q2 and CaC3), Fish Shellfish Immunol., 2012, vol. 32, pp. 1106–1116. https://doi.org/10.1016/j.fsi.2012.03.012

    Article  Google Scholar 

  89. Leite, R.B., Milan, M., Coppe, A., et al., mRNA-Seq and microarray development for the Grooved Carpet shell clam, Ruditapes decussatus: A functional approach to unravel host-parasite interaction, BMC Genomics, 2013, vol. 14, 741. https://doi.org/10.1186/1471-2164-14-741

    Article  Google Scholar 

  90. Allam, B., Pales Espinosa, E., Tanguy, A., Jeffroy, F., Le Bris, C., and Paillard, C., Transcriptional changes in Manila clam (Ruditapes philippinarum) in response to Brown Ring Disease, Fish Shellfish Immunol., 2014, vol. 41, pp. 2–11. https://doi.org/10.1016/j.fsi.2014.05.022

    Article  Google Scholar 

  91. Kong, P., Zhang, H., Wang, Lingling, Zhou, Z., Yang, J., Zhang, Y., Qiu, L., Wang, Leilei, and Song, L., AiC1qDC-1, a novel gC1q-domain-containing protein from bay scallop Argopecten irradians with fungi agglutinating activity, Dev. Comp. Immunol., 2010, vol. 34, pp. 837–846. https://doi.org/10.1016/j.dci.2010.03.006

    Article  Google Scholar 

  92. Li, C., Yu, S., Zhao, J., Su, X., and Li, T., Cloning and characterization of a sialic acid binding lectins (SABL) from Manila clam Venerupis philippinarum, Fish Shellfish Immunol., 2011, vol. 30, pp. 1202–1206. https://doi.org/10.1016/j.fsi.2011.02.022

    Article  Google Scholar 

  93. Jiang, S., Li, H., Zhang, D., Zhang, H., Wang, L., Sun, J., and Song, L., A C1q domain containing protein from Crassostrea gigas serves as pattern recognition receptor and opsonin with high binding affinity to LPS, Fish Shellfish Immunol., 2015, vol. 45, pp. 583–591. https://doi.org/10.1016/j.fsi.2015.05.021

    Article  Google Scholar 

  94. Wang, Leilei, Wang, Lingling, Kong, P., Yang, J., Zhang, H., Wang, M., Zhou, Z., Qiu, L., and Song, L., A novel C1qDC protein acting as pattern recognition receptor in scallop Argopecten irradians, Fish Shellfish Immunol., 2012, vol. 33, pp. 427–435. https://doi.org/10.1016/j.fsi.2012.05.032

    Article  Google Scholar 

  95. Wang, Leilei, Wang, Lingling, Zhang, H., Zhou, Z., Siva, V.S., and Song, L., A C1q domain containing protein from scallop Chlamys farreri serving as pattern recognition receptor with heat-aggregated IgG binding activity, PLoS One, 2012, vol. 7, e43289. https://doi.org/10.1371/journal.pone.0043289

    Article  Google Scholar 

  96. Zhang, H., Song, L., Li, C., Zhao, J., Wang, H., Qiu, L., Ni, D., and Zhang, Y., A novel C1q-domain-containing protein from Zhikong scallop Chlamys farreri with lipopolysaccharide binding activity, Fish Shellfish Immunol., 2008, vol. 25, pp. 281–289. https://doi.org/10.1016/j.fsi.2008.06.003

    Article  Google Scholar 

  97. Yang, J., Wei, X., Liu, X., Xu, J., Yang, D., Yang, Jianmin, Fang, J., and Hu, X., Cloning and transcriptional analysis of two sialic acid-binding lectins (SABLs) from razor clam Solen grandis, Fish Shellfish Immunol., 2012, vol. 32, pp. 578–585. https://doi.org/10.1016/j.fsi.2012.01.012

    Article  Google Scholar 

  98. Wang, Leilei, Wang, Lingling, Zhang, D., Jiang, Q., Sun, R., Wang, H., Zhang, H., and Song, L., A novel multi-domain C1qDC protein from Zhikong scallop Chlamys farreri provides new insights into the function of invertebrate C1qDC proteins, Dev. Comp. Immunol., 2015, vol. 52, pp. 202–214. https://doi.org/10.1016/j.dci.2015.05.009

    Article  Google Scholar 

  99. Zhao, L.-L., Jin, M., Li, X.-C., Ren, Q., and Lan, J.-F., Four C1q domain-containing proteins involved in the innate immune response in Hyriopsis cumingii, Fish Shellfish Immunol., 2016, vol. 55, pp. 323–331. https://doi.org/10.1016/j.fsi.2016.06.003

    Article  Google Scholar 

  100. Huang, Y., Wang, W., and Ren, Q., Identification and function of a novel C1q domain-containing (C1qDC) protein in triangle-shell pearl mussel (Hyriopsis cumingii), Fish Shellfish Immunol., 2016, vol. 58, pp. 612–621. https://doi.org/10.1016/j.fsi.2016.10.010

    Article  Google Scholar 

  101. He, X., Zhang, Y., Yu, F., and Yu, Z., A novel sialic acid binding lectin with anti-bacterial activity from the Hong Kong oyster (Crassostrea hongkongensis), Fish Shellfish Immunol., 2011, vol. 31, pp. 1247–1250. https://doi.org/10.1016/j.fsi.2011.08.021

    Article  Google Scholar 

  102. Pezzati, E., Canesi, L., Damonte, G., et al., Susceptibility of Vibrio aestuarianus 01/032 to the antibacterial activity of Mytilus haemolymph: Identification of a serum opsonin involved in mannose-sensitive interactions, Environ. Microbiol., 2015, vol. 17, pp. 4271–4279. https://doi.org/10.1111/1462-2920.12750

    Article  Google Scholar 

  103. Zhang, H., Wang, L., Song, L., Song, X., Wang, B., Mu, C., and Zhang, Y., A fibrinogen-related protein from bay scallop Argopecten irradians involved in innate immunity as pattern recognition receptor, Fish Shellfish Immunol., 2009, vol. 26, pp. 56–64. https://doi.org/10.1016/j.fsi.2008.07.019

    Article  Google Scholar 

  104. Yang, C., Wang, Leilei, Zhang, H., Wang, Lingling, Huang, M., Sun, Z., Sun, Y., and Song, L., A new fibrinogen-related protein from Argopecten irradians (AiFREP-2) with broad recognition spectrum and bacteria agglutination activity, Fish Shellfish Immunol., 2014, vol. 38, pp. 221–229. https://doi.org/10.1016/j.fsi.2014.03.025

    Article  Google Scholar 

  105. Xiang, Z., Qu, F., Wang, F., Li, J., Zhang, Y., and Yu, Z., Characteristic and functional analysis of a ficolin-like protein from the oyster Crassostrea hongkongensis, Fish Shellfish Immunol., 2014, vol. 40, pp. 514–523. https://doi.org/10.1016/j.fsi.2014.08.006

    Article  Google Scholar 

  106. Gorbushin, A.M. and Iakovleva, N.V., A new gene family of single fibrinogen domain lectins in Mytilus, Fish Shellfish Immunol., 2011, vol. 30, pp. 434–438. https://doi.org/10.1016/j.fsi.2010.10.002

    Article  Google Scholar 

  107. Huang, B., Zhang, L., Li, L., Tang, X., and Zhang, G., Highly diverse fibrinogen-related proteins in the Pacific oyster Crassostrea gigas, Fish Shellfish Immunol., 2015, vol. 43, pp. 485–490. https://doi.org/10.1016/j.fsi.2015.01.021

    Article  Google Scholar 

  108. Gerdol, M. and Venier, P., An updated molecular basis for mussel immunity, Fish Shellfish Immunol., 2015, vol. 46, pp. 17–38. https://doi.org/10.1016/j.fsi.2015.02.013

    Article  Google Scholar 

  109. Catanzaro, E., Calcabrini, C., Bishayee, A., and Fimognari, C., Antitumor potential of marine and freshwater lectins, Mar. Drugs, 2020, vol. 18, 11. https://doi.org/10.3390/md18010011

    Article  Google Scholar 

  110. Callewaert, L. and Michiels, C.W., Lysozymes in the animal kingdom, J. Biosci., 2010, vol. 35, pp. 127–160. https://doi.org/10.1007/s12038-010-0015-5

    Article  Google Scholar 

  111. Nilsen, I.W., Øverbø, K., Sandsdalen, E., Sandaker, E., Sletten, K., and Myrnes, B., Protein purification and gene isolation of chlamysin, a cold-active lysozyme-like enzyme with antibacterial activity, FEBS Lett., 1999, vol. 464, pp. 153–158. https://doi.org/10.1016/s0014-5793(99)01693-2

    Article  Google Scholar 

  112. Matsumoto, T., Nakamura, A.M., and Takahashi, K.G., Cloning of cDNAs and hybridization analysis of lysozymes from two oyster species, Crassostrea gigas and Ostrea edulis, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2006, vol. 145, pp. 325–330. https://doi.org/10.1016/j.cbpb.2006.08.003

    Article  Google Scholar 

  113. La Peyre, J.F., Xue, Q.-G., Itoh, N., Li, Y., and Cooper, R.K., Serine protease inhibitor cvSI-1 potential role in the eastern oyster host defense against the protozoan parasite Perkinsus marinus, Dev. Comp. Immunol., 2010, vol. 34, pp. 84–92. https://doi.org/10.1016/j.dci.2009.08.007

    Article  Google Scholar 

  114. Yue, X., Liu, B., and Xue, Q., An i-type lysozyme from the Asiatic hard clam Meretrix meretrix potentially functioning in host immunity, Fish Shellfish Immunol., 2011, vol. 30, pp. 550–558. https://doi.org/10.1016/j.fsi.2010.11.022

    Article  Google Scholar 

  115. Ren, Q., Qi, Y.-L., Hui, K.-M., Zhang, Z., Zhang, C.-Y., and Wang, W., Four invertebrate-type lysozyme genes from triangle-shell pearl mussel (Hyriopsis cumingii), Fish Shellfish Immunol., 2012, vol. 33, pp. 909–915. https://doi.org/10.1016/j.fsi.2012.07.019

    Article  Google Scholar 

  116. Bachali, S., Jager, M., Hassanin, A., Schoentgen, F., Jollès, P., Fiala-Medioni, A., and Deutsch, J.S., Phylogenetic analysis of invertebrate lysozymes and the evolution of lysozyme function, J. Mol. Evol., 2002, vol. 54, pp. 652–664. https://doi.org/10.1007/s00239-001-0061-6

    Article  Google Scholar 

  117. Detree, C., Chabenat, A., Lallier, F.H., Satoh, N., Shoguchi, E., Tanguy, A., and Mary, J., Multiple I-type lysozymes in the hydrothermal vent mussel Bathymodiolus azoricus and their role in symbiotic plasticity, PLoS One, 2016, vol. 11, e0148988. https://doi.org/10.1371/journal.pone.0148988

    Article  Google Scholar 

  118. Venier, P., De Pitta, C., Bernante, F., et al., MytiBase: A knowledgebase of mussel (M. galloprovincialis) transcribed sequences, BMC Genomics, 2009, vol. 10, 72. https://doi.org/10.1186/1471-2164-10-72

    Article  Google Scholar 

  119. Wang, Q., Wang, C., Mu, C., Wu, H., Zhang, L., and Zhao, J., A novel C-type lysozyme from Mytilus galloprovincialis: Insight into innate immunity and molecular evolution of invertebrate C-type lysozymes, PLoS One, 2013, vol. 8, e67469. https://doi.org/10.1371/journal.pone.0067469

    Article  Google Scholar 

  120. Zhao, J., Song, L., Li, C., Zou, H., Ni, D., Wang, W., and Xu, W., Molecular cloning of an invertebrate goose-type lysozyme gene from Chlamys farreri, and lytic activity of the recombinant protein, Mol. Immunol., 2007, vol. 44, pp. 1198–1208. https://doi.org/10.1016/j.molimm.2006.06.008

    Article  Google Scholar 

  121. Li, J., Zhang, Yang, Zhang, Yuehuan, Xiang, Z., Tong, Y., Qu, F., and Yu, Z., Genomic organization, polymorphisms and molecular evolution of the goose-type lysozyme gene from Zhikong scallop Chlamys farreri, Gene, 2013, vol. 513, pp. 40–52. https://doi.org/10.1016/j.fsi.2014.07.026

    Article  Google Scholar 

  122. He, C., Yu, H., Liu, W., Su, H., Shan, Z., Bao, X., Li, Y., Fu, L., and Gao, X., A goose-type lysozyme gene in Japanese scallop (Mizuhopecten yessoensis): cDNA cloning, mRNA expression and promoter sequence analysis, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2012, vol. 162, pp. 34–43. https://doi.org/10.1016/j.cbpb.2012.02.002

    Article  Google Scholar 

  123. Itoh, N. and Takahashi, K.G., A novel peptidoglycan recognition protein containing a goose-type lysozyme domain from the Pacific oyster, Crassostrea gigas, Mol. Immunol., 2009, vol. 46, pp. 1768–1774. https://doi.org/10.1016/j.molimm.2009.01.022

    Article  Google Scholar 

  124. Ding, J., Wang, R., Yang, F., Zhao, L., Qin, Y., Zhang, G., and Yan, X., Identification and characterization of a novel phage-type like lysozyme from Manila clam, Ruditapes philippinarum, Dev. Comp. Immunol., 2014, vol. 47, pp. 81–89. https://doi.org/10.1016/j.dci.2014.06.013

    Article  Google Scholar 

  125. Ren, Q., Wang, C., Jin, M., Lan, J., Ye, T., Hui, K., Tan, J., Wang, Z., Wyckoff, G.J., Wang, W., and Han, G.-Z., Co-option of bacteriophage lysozyme genes by bivalve genomes, Open Biol., 2017, vol. 7, 160285. https://doi.org/10.1098/rsob.160285

    Article  Google Scholar 

  126. Gonzalez, M., Gueguen, Y., Destoumieux-Garzón, D., Romestand, B., Fievet, J., Pugniere, M., Roquet, F., Escoubas, J.-M., Vandenbulcke, F., Levy, O., Sauné, L., Bulet, P., and Bachere, E., Evidence of a bactericidal permeability increasing protein in an invertebrate, the Crassostrea gigas Cg-BPI, Proc. Natl. Acad. Sci. U. S. A., 2007, vol. 104, pp. 17759–17764. https://doi.org/10.1073/pnas.0702281104

    Article  Google Scholar 

  127. Zhang, Y., He, X., Li, X., Fu, D., Chen, J., and Yu, Z., The second bactericidal permeability increasing protein (BPI) and its revelation of the gene duplication in the Pacific oyster, Crassostrea gigas, Fish Shellfish Immunol., 2011, vol. 30, pp. 954–963. https://doi.org/10.1016/j.fsi.2011.01.031

    Article  Google Scholar 

  128. Moreira, R., Balseiro, P., Planas, J.V., Fuste, B., Beltran, S., Novoa, B., and Figueras, A., Transcriptomics of in vitro immune-stimulated hemocytes from the Manila clam Ruditapes philippinarum using high-throughput sequencing, PLoS One, 2012, vol. 7, e35009. https://doi.org/10.1371/journal.pone.0035009

    Article  Google Scholar 

  129. Zhang, L., Li, L., Zhu, Y., Zhang, G., and Guo, X., Transcriptome analysis reveals a rich gene set related to innate immunity in the Eastern oyster (Crassostrea virginica), Mar. Biotechnol., 2014, vol. 16, pp. 17–33. https://doi.org/10.1007/s10126-013-9526-z

    Article  Google Scholar 

  130. Prado-Alvarez, M., Rotllant, J., Gestal, C., Novoa, B., and Figueras, A., Characterization of a C3 and a factor B-like in the carpet-shell clam, Ruditapes decussatus, Fish Shellfish Immunol., 2009, vol. 26, pp. 305–315. https://doi.org/10.1016/j.fsi.2008.11.015

    Article  Google Scholar 

  131. Peng, K., Wang, J., Sheng, J., Zeng, L., and Hong, Y., Molecular characterization and immune analysis of a defensin from freshwater pearl mussel, Hyriopsis schlegelii, Aquaculture, 2012, vol. 334–337, pp. 45–50. https://doi.org/10.1016/j.aquaculture.2011.12.039

    Article  Google Scholar 

  132. Hubert, F., Noel, T., and Roch, P., A member of the arthropod defensin family from edible Mediterranean mussels (Mytilus galloprovincialis), Eur. J. Biochem., 1996, vol. 240, pp. 302–306.

    Article  Google Scholar 

  133. Charlet, M., Chernysh, S., Philippe, H., Hetru, C., Hoffmann, J.A., and Bulet, P., Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis, J. Biol. Chem., 1996, vol. 271, pp. 21808–21813. https://doi.org/10.1074/jbc.271.36.21808

    Article  Google Scholar 

  134. Mitta, G., Vandenbulcke, F., Noel, T., Romestand, B., Beauvillain, J.C., Salzet, M., and Roch, P., Differential distribution and defence involvement of antimicrobial peptides in mussel, J. Cell Sci., 2000, vol. 113, pp. 2759–2769.

    Article  Google Scholar 

  135. Mitta, G., Hubert, F., Dyrynda, E.A., Boudry, P., and Roch, P., Mytilin B and MGD2, two antimicrobial peptides of marine mussels: Gene structure and expression analysis, Dev. Comp. Immunol., 2000, vol. 24, pp. 381–393. https://doi.org/10.1016/s0145-305x(99)00084-1

    Article  Google Scholar 

  136. Mitta, G., Vandenbulcke, F., Hubert, F., Salzet, M., and Roch, P., Involvement of mytilins in mussel antimicrobial defense, J. Biol. Chem., 2000, vol. 275, pp. 12954–12962. https://doi.org/10.1074/jbc.275.17.12954

    Article  Google Scholar 

  137. Mitta, G., Hubert, F., Noël, T., and Roch, P., Myticin, a novel cysteine-rich antimicrobial peptide isolated from haemocytes and plasma of the mussel Mytilus galloprovincialis, Eur. J. Biochem., 1999, vol. 265, pp. 71–78. https://doi.org/10.1046/j.1432-1327.1999.00654.x

    Article  Google Scholar 

  138. Martinez-Lopez, A., Encinar, J.A., Medina-Gali, R.M., Balseiro, P., Garcia-Valtanen, P., Figueras, A., Novoa, B., and Estepa, A., pH-dependent solution structure and activity of a reduced form of the host-defense peptide myticin C (Myt C) from the mussel Mytilus galloprovincialis, Mar. Drugs, 2013, vol. 11, pp. 2328–2346. https://doi.org/10.3390/md11072328

    Article  Google Scholar 

  139. Domeneghetti, S., Franzoi, M., Damiano, N., Norante, R., El Halfawy, N.M., Mammi, S., Marin, O., Bellanda, M., and Venier, P., Structural and antimicrobial features of peptides related to myticin C, a special defense molecule from the Mediterranean mussel Mytilus galloprovincialis, J. Agric. Food Chem., 2015, vol. 63, pp. 9251–9259. https://doi.org/10.1021/acs.jafc.5b03491

    Article  Google Scholar 

  140. Novoa, B., Romero, A., Álvarez, Á.L., Moreira, R., Pereiro, P., Costa, M.M., Dios, S., Estepa, A., Parra, F., and Figueras, A., Antiviral activity of myticin C peptide from mussel: An ancient defense against herpesviruses, J. Virol., 2016, vol. 90, pp. 7692–7702. https://doi.org/10.1128/JVI.00591-16

    Article  Google Scholar 

  141. Li, H., Venier, P., Prado-Alvárez, M., Gestal, C., Toubiana, M., Quartesan, R., Borghesan, F., Novoa, B., Figueras, A., and Roch, P., Expression of Mytilus immune genes in response to experimental challenges varied according to the site of collection, Fish Shellfish Immunol., 2010, vol. 28, pp. 640–648. https://doi.org/10.1016/j.fsi.2009.12.022

    Article  Google Scholar 

  142. Gueguen, Y., Herpin, A., Aumelas, A., Garnier, J., Fievet, J., Escoubas, J.-M., Bulet, P., Gonzalez, M., Lelong, C., Favrel, P., and Bachère, E., Characterization of a defensin from the oyster Crassostrea gigas. Recombinant production, folding, solution structure, antimicrobial activities, and gene expression, J. Biol. Chem., 2006, vol. 281, pp. 313–323. https://doi.org/10.1074/jbc.M510850200

    Article  Google Scholar 

  143. Gonzalez, M., Gueguen, Y., Desserre, G., de Lorgeril, J., Romestand, B., and Bachère, E., Molecular characterization of two isoforms of defensin from hemocytes of the oyster Crassostrea gigas, Dev. Comp. Immunol., 2007, vol. 31, pp. 332–339. https://doi.org/10.1016/j.dci.2006.07.006

    Article  Google Scholar 

  144. Xu, W. and Faisal, M., Defensin of the zebra mussel (Dreissena polymorpha): Molecular structure, in vitro expression, antimicrobial activity, and potential functions, Mol. Immunol., 2010, vol. 47, pp. 2138–2147. https://doi.org/10.1016/j.molimm.2010.01.025

    Article  Google Scholar 

  145. Seo, J.-K., Lee, M.J., Nam, B.-H., and Park, N.G., cgMolluscidin, a novel dibasic residue repeat rich antimicrobial peptide, purified from the gill of the Pacific oyster, Crassostrea gigas, Fish Shellfish Immunol., 2013, vol. 35, pp. 480–488. https://doi.org/10.1016/j.fsi.2013.05.010

    Article  Google Scholar 

  146. Wang, Q., Zhang, L., Yang, D., Yu, Q., Li, F., Cong, M., Ji, C., Wu, H., and Zhao, J., Molecular diversity and evolution of defensins in the manila clam Ruditapes philippinarum, Fish Shellfish Immunol., 2015, vol. 47, pp. 302–312. https://doi.org/10.1016/j.fsi.2015.09.008

    Article  Google Scholar 

  147. Gerdol, M., De Moro, G., Manfrin, C., Venier, P., and Pallavicini, A., Big defensins and mytimacins, new AMP families of the Mediterranean mussel Mytilus galloprovincialis, Dev. Comp. Immunol., 2012, vol. 36, pp. 390–399. https://doi.org/10.1016/j.dci.2011.08.003

    Article  Google Scholar 

  148. Zhao, J., Li, C., Chen, A., Li, L., Su, X., and Li, T., Molecular characterization of a novel big defensin from clam Venerupis philippinarum, PLoS One, 2010, vol. 5, e13480. https://doi.org/10.1371/journal.pone.0013480

    Article  Google Scholar 

  149. Rosa, R.D., Santini, A., Fievet, J., Bulet, P., Destoumieux-Garzón, D., and Bachère, E., Big defensins, a diverse family of antimicrobial peptides that follows different patterns of expression in hemocytes of the oyster Crassostrea gigas, PLoS One, 2011, vol. 6, e25594. https://doi.org/10.1371/journal.pone.0025594

    Article  Google Scholar 

  150. Li, M., Zhu, L., Zhou, C., Sun, S., Fan, Y., and Zhuang, Z., Molecular characterization and expression of a novel big defensin (Sb-BDef1) from ark shell, Scapharca broughtonii, Fish Shellfish Immunol., 2012, vol. 33, pp. 1167–1173. https://doi.org/10.1016/j.fsi.2012.09.008

    Article  Google Scholar 

  151. Wang, G.-L., Xia, X.-L., Li, X.-L., Dong, S.-J., and Li, J.-L., Molecular characterization and expression patterns of the big defensin gene in freshwater mussel (Hyriopsis cumingii), GMR, Genet. Mol. Res., 2014, vol. 13, pp. 704–715. https://doi.org/10.4238/2014.January.29.1

    Article  Google Scholar 

  152. Yang, J., Luo, J., Zheng, H., Lu, Y., and Zhang, H., Cloning of a big defensin gene and its response to Vibrio parahaemolyticus challenge in the noble scallop Chlamys nobilis (Bivalve: Pectinidae), Fish Shellfish Immunol., 2016, vol. 56, pp. 445–449. https://doi.org/10.1016/j.fsi.2016.07.030

    Article  Google Scholar 

  153. González, R., Brokordt, K., Cárcamo, et al., Molecular characterization and protein localization of the antimicrobial peptide big defensin from the scallop Argopecten purpuratus after Vibrio splendidus challenge, Fish Shellfish Immunol., 2017, vol. 68, pp. 173–179. https://doi.org/10.1016/j.fsi.2017.07.010

    Article  Google Scholar 

  154. Sonthi, M., Toubiana, M., Pallavicini, A., Venier, P., and Roch, P., Diversity of coding sequences and gene structures of the antifungal peptide mytimycin (MytM) from the Mediterranean mussel, Mytilus galloprovincialis, Mar. Biotechnol., 2011, vol. 13, pp. 857–867. https://doi.org/10.1007/s10126-010-9345-4

    Article  Google Scholar 

  155. Gueguen, Y., Bernard, R., Julie, F., Paulina, S., Delphine, D.-G., Franck, V., Philippe, B., and Evelyne, B., Oyster hemocytes express a proline-rich peptide displaying synergistic antimicrobial activity with a defensin, Mol. Immunol., 2009, vol. 46, pp. 516–522. https://doi.org/10.1016/j.molimm.2008.07.021

    Article  Google Scholar 

  156. Leoni, G., De Poli, A., Mardirossian, M., et al., Myticalins: A novel multigenic family of linear, cationic antimicrobial peptides from marine mussels (Mytilus spp.), Mar. Drugs, 2017, vol. 15, p. 261. https://doi.org/10.3390/md15080261

    Article  Google Scholar 

  157. Seo, J.-K., Stephenson, J., and Noga, E.J., Multiple antibacterial histone H2B proteins are expressed in tissues of American oyster, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2011, vol. 158, pp. 223–229. https://doi.org/10.1016/j.cbpb.2010.11.011

    Article  Google Scholar 

  158. Royet, J. and Dziarski, R., Peptidoglycan recognition proteins: Pleiotropic sensors and effectors of antim crobial defences, Nat. Rev. Microbiol., 2007, vol. 5, pp. 264–277. https://doi.org/10.1038/nrmicro1620

    Article  Google Scholar 

  159. Montaño, A.M., Tsujino, F., Takahata, N., and Satta, Y., Evolutionary origin of peptidoglycan recognition proteins in vertebrate innate immune system, BMC Evol. Biol., 2011, vol. 11, 79. https://doi.org/10.1186/1471-2148-11-79

    Article  Google Scholar 

  160. Su, J., Ni, D., Song, L., Zhao, J., and Qiu, L., Molecular cloning and characterization of a short type peptidoglycan recognition protein (CfPGRP-S1) cDNA from Zhikong scallop Chlamys farreri, Fish Shellfish Immunol., 2007, vol. 23, pp. 646–656. https://doi.org/10.1016/j.fsi.2007.01.023

    Article  Google Scholar 

  161. Yang, Z., Li, J., Li, Y., Wu, H., and Wang, X., Molecular cloning and functional characterization of a short peptidoglycan recognition protein (HcPGRPS1) from the freshwater mussel, Hyriopsis cumingi, Mol. Immunol., 2013, vol. 56, pp. 729–738. https://doi.org/10.1016/j.molimm.2013.06.019

    Article  Google Scholar 

  162. Wei, X., Yang, Jianmin, Yang, D., Xu, J., Liu, X., Yang, Jialong, Fang, J., and Qiao, H., Molecular cloning and mRNA expression of two peptidoglycan recognition protein (PGRP) genes from mollusk Solen grandis, Fish Shellfish Immunol., 2012, vol. 32, pp. 178–185. https://doi.org/10.1016/j.fsi.2011.11.009

    Article  Google Scholar 

  163. Christensen, B.M., Li, J., Chen, C.-C., and Nappi, A.J., Melanization immune responses in mosquito vectors, Trends Parasitol., 2005, vol. 21, pp. 192–199. https://doi.org/10.1016/j.pt.2005.02.007

    Article  Google Scholar 

  164. Tang, H., Regulation and function of the melanization reaction in Drosophila, Fly, 2009, vol. 3, pp. 105–111. https://doi.org/10.4161/fly.3.1.7747

    Article  Google Scholar 

  165. Luna-Acosta, A., Breitwieser, M., Renault, T., and Thomas-Guyon, H., Recent findings on phenoloxidases in bivalves, Mar. Pollut. Bull., 2017, vol. 122, pp. 5–16. https://doi.org/10.1016/j.marpolbul.2017.06.031

    Article  Google Scholar 

  166. Waite, J.H. and Wilbur, K.M., Phenoloxidase in the periostracum of the marine bivalve Modiolus demissus Dillwyn, J. Exp. Zool., 1976, vol. 195, pp. 359–367.

    Article  Google Scholar 

  167. Ford, S.E. and Borrero, F.J., Epizootiology and pathology of juvenile oyster disease in the Eastern oyster, Crassostrea virginica, J. Invertebr. Pathol., 2001, vol. 78, pp. 141–154. https://doi.org/10.1006/jipa.2001.5052

    Article  Google Scholar 

  168. Paillard, C., A short-review of brown ring disease, a vibriosis affecting clams, Ruditapes philippinarum and Ruditapes decussatus, Aquat. Living Resour., 2004, vol. 17, pp. 467–475. https://doi.org/10.1051/alr:2004053

    Article  Google Scholar 

  169. Butt, D. and Raftos, D., Phenoloxidase-associated cellular defence in the Sydney rock oyster, Saccostrea glomerata, provides resistance against QX disease infections, Dev. Comp. Immunol., 2008, vol. 32, pp. 299–306. https://doi.org/10.1016/j.dci.2007.06.006

    Article  Google Scholar 

  170. Asokan, R., Arumugam, M., and Mullainadhan, P., Activation of prophenoloxidase in the plasma and haemocytes of the marine mussel Perna viridis Linnaeus, Dev. Comp. Immunol., 1997, vol. 21, pp. 1–12. https://doi.org/10.1016/s0145-305x(97)00004-9

    Article  Google Scholar 

  171. Hellio, C., Bado-Nilles, A., Gagnaire, B., Renault, T., and Thomas-Guyon, H., Demonstration of a true phenoloxidase activity and activation of a ProPO cascade in Pacific oyster, Crassostrea gigas (Thunberg) in vitro, Fish Shellfish Immunol., 2007, vol. 22, pp. 433–440. https://doi.org/10.1016/j.fsi.2006.06.014

    Article  Google Scholar 

  172. Raftos, D.A., Kuchel, R., Aladaileh, S., and Butt, D., Infectious microbial diseases and host defense responses in Sydney rock oysters, Front. Aquat. Microbiol., 2014, vol. 5, pp. 135. https://doi.org/10.3389/fmicb.2014.00135

    Article  Google Scholar 

  173. Xing, J., Jiang, J., and Zhan, W., Phenoloxidase in the scallop Chlamys farreri: Purification and antibacterial activity of its reaction products generated in vitro, Fish Shellfish Immunol., 2012, vol. 32, pp. 89–93. https://doi.org/10.1016/j.fsi.2011.10.025

    Article  Google Scholar 

  174. Jiang, J., Xing, J., Sheng, X., and Zhan, W., Characterization of phenoloxidase from the bay scallop Argopecten irradians, J. Shellfish Res., 2011, vol. 30, pp. 273–277. https://doi.org/10.2983/035.030.0212

    Article  Google Scholar 

  175. Niu, D., Jin, K., Wang, L., Feng, B., and Li, J., Molecular characterization and expression analysis of four cathepsin L genes in the razor clam, Sinonovacula constricta, Fish Shellfish Immunol., 2013, vol. 35, pp. 581–588. https://doi.org/10.1016/j.fsi.2013.06.001

    Article  Google Scholar 

  176. Niu, D., Xie, S., Bai, Z., Wang, L., Jin, K., and Li, J., Identification of cathepsin B in the razor clam Sinonovacula constricta and its role in innate immune responses, Dev. Comp. Immunol., 2013, vol. 41, pp. 94–99. https://doi.org/10.1016/j.dci.2014.04.012

    Article  Google Scholar 

  177. Niu D., et al., Identification, expression, and responses to bacterial challenge of the cathepsin C gene from the razor clam Sinonovacula constricta, Dev. Comp. Immunol., 2014, vol. 46, pp. 241–245.

    Article  Google Scholar 

  178. Hu, Xiaojuan, Hu, Xiangping, Hu, B., Wen, C., Xie, Y., Wu, D., Tao, Z., Li, A., and Gao, Q., Molecular cloning and characterization of cathepsin L from freshwater mussel, Cristaria plicata, Fish Shellfish Immunol., 2014, vol. 40, pp. 446–454. https://doi.org/10.1016/j.fsi.2014.07.005

    Article  Google Scholar 

  179. Ertl, N.G., O’Connor, W.A., Papanicolaou, A., Wiegand, A.N., and Elizur, A., Transcriptome analysis of the sydney Rock oyster, Saccostrea glomerata: Insights into molluscan immunity, PLoS One, 2016, vol. 11, e0156649. https://doi.org/10.1371/journal.pone.0156649

    Article  Google Scholar 

  180. Xue, Q.-G., Waldrop, G.L., Schey, K.L., Itoh, N., Ogawa, M., Cooper, R.K., Losso, J.N., and La Peyre, J.F., A novel slow-tight binding serine protease inhibitor from eastern oyster (Crassostrea virginica) plasma inhibits perkinsin, the major extracellular protease of the oyster protozoan parasite Perkinsus marinus, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 2006, vol. 145, pp. 16–26. https://doi.org/10.1016/j.cbpb.2006.05.010

    Article  Google Scholar 

  181. Gutiérrez-Rivera, J.N., Arcos-Ortega, G.F., Luna-González, A., et al., Differential expression of serine protease inhibitors 1 and 2 in Crassostrea corteziensis and C. virginica infected with Perkinsus marinus, Dis. Aquat. Org., 2015, vol. 112, pp. 185–197. https://doi.org/10.3354/dao02808

    Article  Google Scholar 

  182. Zhu, L., Song, L., Chang, Y., Xu, W., and Wu, L., Molecular cloning, characterization and expression of a novel serine proteinase inhibitor gene in bay scallops (Argopecten irradians, Lamarck 1819), FishShellfish Immunol., 2006, vol. 20, pp. 320–331. https://doi.org/10.1016/j.fsi.2005.05.009

    Article  Google Scholar 

  183. Wang, B., Zhao, J., Song, L., et al., Molecular cloning and expression of a novel Kazal-type serine proteinase inhibitor gene from Zhikong scallop Chlamys farreri, and the inhibitory activity of its recombinant domain, Fish Shellfish Immunol., 2008, vol. 24, pp. 629–637. https://doi.org/10.1016/j.fsi.2008.01.017

    Article  Google Scholar 

  184. Maldonado-Aguayo, W., Núñez-Acuña, G., Valenzuela-Muñoz, V., Chávez-Mardones, J., and Gallardo-Escárate, C., Molecular characterization of two Kazal-type serine proteinase inhibitor genes in the surf clam Mesodesma donacium exposed to Vibrio anguillarum, Fish Shellfish Immunol., 2013, vol. 34, pp. 1448–1454. https://doi.org/10.1016/j.fsi.2013.03.356

    Article  Google Scholar 

  185. Yu, Q., Yang, D., Wang, Q., Zhang, Y., Cong, M., Wu, H., Ji, C., Li, F., and Zhao, J., Molecular characterization, expression and functional analysis of two Kazal-type serine protease inhibitors from Venerupis philippinarum, Fish Shellfish Immunol., 2017, vol. 70, pp. 156–163. https://doi.org/10.1016/j.fsi.2017.09.018

    Article  Google Scholar 

  186. Montagnani, C., Le Roux, F., Berthe, F., and Escoubas, J.M., Cg-TIMP, an inducible tissue inhibitor of metalloproteinase from the Pacific oyster Crassostrea gigas with a potential role in wound healing and defense mechanisms, FEBS Lett., 2001, vol. 500, pp. 64–70. https://doi.org/10.1016/s0014-5793(01)02559-5

    Article  Google Scholar 

  187. Roberts, S., Gueguen, Y., de Lorgeril, J., and Goetz, F., Rapid accumulation of an interleukin 17 homolog transcript in Crassostrea gigas hemocytes following bacterial exposure, Dev. Comp. Immunol., 2008, vol. 32, pp. 1099–1104. https://doi.org/10.1016/j.dci.2008.02.006

    Article  Google Scholar 

  188. Wu, S.-Z., Huang, X.-D., Li, Q., and He, M.-X., Interleukin-17 in pearl oyster (Pinctada fucata): Molecular cloning and functional characterization, Fish Shellfish Immunol., 2013. vol. 34, pp. 1050–1056. https://doi.org/10.1016/j.fsi.2013.01.005

    Article  Google Scholar 

  189. Moreira, R., Milan, M., Balseiro, P., et al., Gene expression profile analysis of Manila clam (Ruditapes philippinarum) hemocytes after a Vibrio alginolyticus challenge using an immune-enriched oligo-microarray, BMC Genomics, 2014, vol. 15, 267. https://doi.org/10.1186/1471-2164-15-267

    Article  Google Scholar 

  190. Xin, L., Zhang, H., Du, X., Li, Y., Li, M., Wang, L., Wang, H., Qiu, L., and Song, L., The systematic regulation of oyster CgIL17-1 and CgIL17-5 in response to air exposure, Dev. Comp. Immunol., 2016, vol. 63, pp. 144–155.https://doi.org/10.1016/j.dci.2016.06.001

  191. Li, J., Zhang, Yang, Zhang, Yuehuan, Xiang, Z., Tong, Y., Qu, F., and Yu, Z., Genomic characterization and expression analysis of five novel IL-17 genes in the Pacific oyster, Crassostrea gigas, Fish Shellfish Immunol., 2014, vol. 40, pp. 455–465. https://doi.org/10.1016/j.fsi.2014.07.026

    Article  Google Scholar 

  192. Parisi, M.-G., Toubiana, M., Mangano, V., Parrinello, N., Cammarata, M., and Roch, P., MIF from mussel: Coding sequence, phylogeny, polymorphism, 3D model and regulation of expression, Dev. Comp. Immunol., 2012, vol. 36, pp. 688–696. https://doi.org/10.1016/j.dci.2011.10.014

    Article  Google Scholar 

  193. Li, J., Chen, J., Zhang, Y., and Yu, Z., Expression of allograft inflammatory factor-1 (AIF-1) in response to bacterial challenge and tissue injury in the pearl oyster, Pinctada martensii, Fish Shellfish Immunol., 2013, vol. 34, pp. 365–371. https://doi.org/10.1016/j.fsi.2012.11.012

    Article  Google Scholar 

  194. Martin-Gomez, L., Villalba, A., Carballal, M.J., and Abollo, E., Molecular characterisation of TNF, AIF, dermatopontin and VAMP genes of the flat oyster Ostrea edulis and analysis of their modulation by diseases, Gene, 2014, vol. 533, pp. 208–217. https://doi.org/10.1016/j.gene.2013.09.085

    Article  Google Scholar 

  195. Zhang, Y., Li, J., Yu, F., He, X., and Yu, Z., Allograft inflammatory factor-1 stimulates hemocyte immune activation by enhancing phagocytosis and expression of inflammatory cytokines in Crassostrea gigas, Fish Shellfish Immunol., 2013, vol. 34, pp. 1071–1077. https://doi.org/10.1016/j.fsi.2013.01.014

    Article  Google Scholar 

  196. Qu, F., Xiang, Z., Zhang, Yang, Li, J., Xiao, S., Zhang, Yuehuan, Qin, Y., Zhou, Y., and Yu, Z., Molecular identification and functional characterization of a tumor necrosis factor (TNF) gene in Crassostrea hongkongensis, Immunobiology, 2017, vol. 222, pp. 751–758. https://doi.org/10.1016/j.imbio.2017.02.002

    Article  Google Scholar 

  197. Liao, Z., Wang, X., Liu, H., Fan, M., Sun, J., and Shen, W., Molecular characterization of a novel antimicrobial peptide from Mytilus coruscus, Fish Shellfish Immunol., 2013, vol. 34, pp. 610–616. https://doi.org/10.1016/j.fsi.2012.11.030

    Article  Google Scholar 

  198. Qin, C., Huang, W., Zhou, S., Wang, X., Liu, H., Fan, M., Wang, R., Gao, P., and Liao, Z., Characterization of a novel antimicrobial peptide with chitin-biding domain from Mytilus coruscus, Fish Shellfish Immunol., 2014, vol. 41, pp. 362–370. https://doi.org/10.1016/j.fsi.2014.09.019

    Article  Google Scholar 

  199. Gerdol, M., Puillandre, N., De Moro, G., et al., Identification and characterization of a novel family of cysteine-rich peptides (MgCRP-I) from Mytilus galloprovincialis, Genome Biol. Evol., 2015, vol. 7, pp. 2203–2219. https://doi.org/10.1093/gbe/evv133

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful the CKP Primorsky aquarium, Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences (Vladivostok, Russia).

Funding

This study was supported by the RF Ministry of Science and Higher Education (project no. 0657-2020-0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Grinchenko.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinchenko, A.V., Kumeiko, V.V. Bivalves Humoral Immunity: Key Molecules and Their Functions. Russ J Mar Biol 48, 399–417 (2022). https://doi.org/10.1134/S1063074022060062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063074022060062

Keywords:

Navigation