Skip to main content
Log in

Diversity of Coding Sequences and Gene Structures of the Antifungal Peptide Mytimycin (MytM) from the Mediterranean Mussel, Mytilus galloprovincialis

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Knowledge on antifungal biomolecules is limited compared to antibacterial peptides. A strictly antifungal peptide from the blue mussel, Mytilus edulis named mytimycin (MytM) was reported in 1996 as partial NH2 33 amino acid sequence. Using back-translations of the previous sequence, MytM-related nucleotide sequences were identified from a normalized Mytilus galloprovincialis expressed sequence tag library. Primers designed from a consensus sequence have been used to obtain a fragment of 560 nucleotides, including the complete coding sequence of 456 nucleotides. Precursor is constituted by a signal peptide of 23 amino acids, followed by MytM of 54 amino acids (6.2–6.3 kDa, 12 cysteines) and C-terminal extension of 75 amino acids. Only two major amino acid precursor sequences emerged, one shared by M. galloprovincialis from Venice and Vigo, the other belonging to M. galloprovincialis from Palavas, with nine amino acid differences between the two MytM. Predicted disulfide bonds suggested the presence of two constrained domains joined by amino acidic NIFG track. Intriguing was the presence of conserved canonical EF hand-motif located in the C-terminus extension of the precursor. The MytM gene was found interrupted by two introns. Intron 2 existed in two forms, a long (1,112 nucleotides) and a short (716 nucleotides) one resulting from the removal of the central part of the long one. Both the short (GenBank FJ804479) and the long (GenBank FJ804478) genes are simultaneously present in the mussel genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tag

gDNA:

Genomic DNA

MytM:

Mature moiety of mytimycin precursor

MytM-P:

Mature moiety of mytimycin from Palavas

MytM-V:

Mature moiety of mytimycin from Vigo and Venice

UTR:

Untranslated region

References

  • Boman HG, Nilsson-Faye I, Paul K, Rasmuson T Jr (1974) Insect immunity. I. Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia cynthia pupae. Infect Immun 10:136–145

    PubMed  CAS  Google Scholar 

  • Boon E, Faure MF, Bierne N (2009) The flow of antimicrobial peptide genes through a genetic barrier between Mytilus edulis and M. galloprovincialis. J Mol Evol 68:461–474

    Article  PubMed  CAS  Google Scholar 

  • Charlet M, Chernysh S, Philippe H, Hetru C, Hoffmann JA, Bulet P (1996) Innate immunity. Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusc, Mytilus edulis. J Biol Chem 271:21808–21813

    Article  PubMed  CAS  Google Scholar 

  • Costa MM, Dios S, Alonso-Gutierrez J, Romero A, Novoa B, Figueras A (2008) Myticin C variability in mussel: ancient defence mechanism or self/nonself-discrimination? Dev Comp Immunol 32:213–226

    Article  PubMed  Google Scholar 

  • Costa MM, Dios S, Alonso-Gutierrez J, Romero A, Novoa B, Figueras A (2009) Evidence of high individual diversity on myticin C in mussel (Mytilus galloprovincialis). Dev Comp Immunol 33:162–170

    Article  PubMed  CAS  Google Scholar 

  • Da Silva P, Jouvensal L, Lamberty M, Bulet P, Caille A, Vovelle F (2003) Solution structure of termicin, an antimicrobial peptide from the termite Pseudacanthotermes spiniger. Protein Sci 12:438–446

    Article  PubMed  Google Scholar 

  • Dassanayake RS, Silva Gunawardene YI, Tobe SS (2007) Evolutionary selective trends of insect/mosquito antimicrobial defensin peptides containing cysteine-stabilized alpha/beta motifs. Peptides 28:62–75

    Article  PubMed  CAS  Google Scholar 

  • Destoumieux D, Bulet P, Loew D, Van Dorsselaer A, Rodriguez J, Bachere E (1997) Penaeidins, a new family of antimicrobial peptides isolated from the shrimp Penaeus vannamei (Decapoda). J Biol Chem 272:28398–28406

    Article  PubMed  CAS  Google Scholar 

  • Ekengren S, Hultmark D (1999) Drosophila cecropin as an antifungal agent. Insect Biochem Mol Biol 29:965–972

    Article  PubMed  CAS  Google Scholar 

  • Fehlbaum P, Bulet P, Chernysh S, Briand JP, Roussel JP, Letellier L, Hetru C, Hoffmann JA (1996) Structure–activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides. Proc Natl Acad Sci U S A 93:1221–1225

    Article  PubMed  CAS  Google Scholar 

  • Fehlbaum P, Bulet P, Michaut L, Lagueux M, Broekaert WF, Hetru C, Hoffmann JA (1994) Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J Biol Chem 269:33159–33163

    PubMed  CAS  Google Scholar 

  • Gestal C, Costa M, Figueras A, Novoa B (2007) Analysis of differentially expressed genes in response to bacterial stimulation in hemocytes of the carpet-shell clam Ruditapes decussatus: identification of new antimicrobial peptides. Gene 406:134–143

    PubMed  CAS  Google Scholar 

  • Gueguen Y, Garnier J, Robert L, Lefranc MP, Mougenot I, de Lorgeril J, Janech M, Gross PS, Warr GW, Cuthbertson B, Barracco MA, Bulet P, Aumelas A, Yang Y, Bo D, Xiang J, Tassanakajon A, Piquemal D, Bachere E (2006a) PenBase, the shrimp antimicrobial peptide penaeidin database: sequence-based classification and recommended nomenclature. Dev Comp Immunol 30:283–288

    Article  PubMed  CAS  Google Scholar 

  • Gueguen Y, Herpin A, Aumelas A, Garnier J, Fievet J, Escoubas JM, Bulet P, Gonzalez M, Lelong C, Favrel P, Bachere E (2006b) Characterization of a defensin from the oyster Crassostrea gigas. Recombinant production, folding, solution structure, antimicrobial activities, and gene expression. J Biol Chem 281:313–323

    Article  PubMed  CAS  Google Scholar 

  • Hubert F, Noel T, Roch P (1996) A member of the arthropod defensin family from edible Mediterranean mussels (Mytilus galloprovincialis). Eur J Biochem 240:302–306

    Article  PubMed  CAS  Google Scholar 

  • Iijima R, Kurata S, Natori S (1993) Purification, characterization, and cDNA cloning of an antifungal protein from the hemolymph of Sarcophaga peregrina (flesh fly) larvae. J Biol Chem 268:12055–12061

    PubMed  CAS  Google Scholar 

  • Kubota Y, Watanabe Y, Otsuka H, Tamiya T, Tsuchiya T, Matsumoto JJ (1985) Purification and characterization of an antibacterial factor from snail mucus. Comp Biochem Physiol C 82:345–348

    Article  PubMed  CAS  Google Scholar 

  • Lamberty M, Ades S, Uttenweiler-Joseph S, Brookhart G, Bushey D, Hoffmann JA, Bulet P (1999) Insect immunity. Isolation from the lepidopteran Heliothis virescens of a novel insect defensin with potent antifungal activity. J Biol Chem 274:9320–9326

    Article  PubMed  CAS  Google Scholar 

  • Lamberty M, Zachary D, Lanot R, Bordereau C, Robert A, Hoffmann JA, Bulet P (2001) Insect immunity. Constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. J Biol Chem 276:4085–4092

    Article  PubMed  CAS  Google Scholar 

  • Levashina EA, Ohresser S, Bulet P, Reichhart JM, Hetru C, Hoffmann JA (1995) Metchnikowin, a novel immune-inducible proline-rich peptide from Drosophila with antibacterial and antifungal properties. Eur J Biochem 233:694–700

    Article  PubMed  CAS  Google Scholar 

  • Lewit-Bentley A, Rety S (2000) EF hand calcium-binding proteins. Curr Opin Struct Biol 10:637–643

    Article  PubMed  CAS  Google Scholar 

  • Mitta G, Hubert F, Dyrynda EA, Boudry P, Roch P (2000a) Mytilin B and MGD2, two antimicrobial peptides of marine mussels: gene structure and expression analysis. Dev Comp Immunol 24:381–393

    Article  PubMed  CAS  Google Scholar 

  • Mitta G, Hubert F, Noel T, Roch P (1999a) Myticin, a novel cysteine-rich antimicrobial peptide isolated from haemocytes and plasma of the mussel Mytilus galloprovincialis. Eur J Biochem 265:71–78

    Article  PubMed  CAS  Google Scholar 

  • Mitta G, Vandenbulcke F, Hubert F, Roch P (1999b) Mussel defensins are synthesised and processed in granulocytes then released into the plasma after bacterial challenge. J Cell Sci 112:4233–4242

    PubMed  CAS  Google Scholar 

  • Mitta G, Vandenbulcke F, Hubert F, Salzet M, Roch P (2000b) Involvement of mytilins in mussel antimicrobial defense. J Biol Chem 275:12954–12962

    Article  PubMed  CAS  Google Scholar 

  • Pallavicini A, Costa MM, Gestal C, Dreos R, Figueras A, Venier P, Novoa B (2008) High sequence variability of myticin transcripts in hemocytes of immune-stimulated mussels suggests ancient host–pathogen interactions. Dev Comp Immunol 32:213–226

    Article  PubMed  CAS  Google Scholar 

  • Parisi MG, Li H, Toubiana M, Parrinello N, Cammarata M, Roch P (2009) Polymorphism of mytilin B mRNA is not translated into mature peptide. Mol Immunol 46:384–392

    Article  PubMed  CAS  Google Scholar 

  • Prado-Alvarez M, Gestal C, Novoa B, Figueras A (2009) Differentially expressed genes of the carpet shell clam Ruditapes decussatus against Perkinsus olseni. Fish Shellfish Immunol 26:72–83

    Article  PubMed  CAS  Google Scholar 

  • Selitrennikoff CP (2001) Antifungal proteins. Appl Environ Microbiol 67:2883–2894

    Article  PubMed  CAS  Google Scholar 

  • Somboonwiwat K, Marcos M, Tassanakajon A, Klinbunga S, Aumelas A, Romestand B, Gueguen Y, Boze H, Moulin G, Bachere E (2005) Recombinant expression and anti-microbial activity of anti-lipopolysaccharide factor (ALF) from the black tiger shrimp Penaeus monodon. Dev Comp Immunol 29:841–851

    Article  PubMed  CAS  Google Scholar 

  • Tomie T, Ishibashi J, Furukawa S, Kobayashi S, Sawahata R, Asaoka A, Tagawa M, Yamakawa M (2003) Scarabaecin, a novel cysteine-containing antifungal peptide from the rhinoceros beetle, Oryctes rhinoceros. Biochem Biophys Res Commun 307:261–266

    Article  PubMed  CAS  Google Scholar 

  • Venier P, De Pitta C, Bernante F, Varotto L, De Nardi B, Bovo G, Roch P, Novoa B, Figueras A, Pallavicini A, Lanfranchi G (2009) MytiBase: a knowledgebase of mussel (M. galloprovincialis) transcribed sequences. BMC Genomics 10:72

    Article  PubMed  Google Scholar 

  • Wang G, Li X, Wang Z (2009) ADP2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Research 37:933–937

    Article  Google Scholar 

  • Wang N, Whang I, Lee J (2008) A novel C-type lectin from abalone, Haliotis discus discus, agglutinates Vibrio alginolyticus. Dev Comp Immunol 32:1034–1040

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki M, Ohye H, Kisugi J, Kamiya H (1990) Bacteriostatic and cytolytic activity of purple fluid from the sea hare. Dev Comp Immunol 14:379–383

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Song L, Li C, Zhao J, Wang H, Gao Q, Xu W (2007) Molecular cloning and characterization of a thioester-containing protein from Zhikong scallop Chlamys farreri. Mol Immunol 44:3492–3500

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Wu X, Zhang SQ (2008) Antifungal mechanism of antibacterial peptide, ABP-CM4, from Bombyx mori against Aspergillus niger. Biotechnol Lett 30:2157–2163

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This collaborative work was partly funded by the EU program IMAQUANIM (FOOD-CT-2005-007103). MT was fully supported by IMAQUANIM. Thanks to Umberto Rosani for the preliminary comparison performed on new FLX 454 sequence MytM data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Roch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

Supplementary data. Nucleotides changes within mytimycin precursor observed in M. galloprovincialis from Palavas, France; Venice, Italy; and Vigo, Spain with the involved codons, the number of clones and corresponding amino acid. MytM is gray boxed. Changed nucleotides are in bold–gray boxed. Amino acids in italic referred to equivalent replacements in terms of side chain characteristics. Note the high number of changes in Vigo’s mussels, eight of them being silent and eight other corresponding to replacements by equivalent amino acids. Note also that the only four changes in Palavas’ mussels were common to Vigo’s mussels, whereas only one change out of five from Venice’s mussels was shared with Vigo’s mussels. Except for locations +299/+300, note that one codon was always largely predominant (DOC 123 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonthi, M., Toubiana, M., Pallavicini, A. et al. Diversity of Coding Sequences and Gene Structures of the Antifungal Peptide Mytimycin (MytM) from the Mediterranean Mussel, Mytilus galloprovincialis . Mar Biotechnol 13, 857–867 (2011). https://doi.org/10.1007/s10126-010-9345-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-010-9345-4

Keywords

Navigation