Skip to main content
Log in

Epithelial-Mesenchymal Transition: Molecular Mechanisms of Retinal Pigment Epithelial Cell Activation

  • REVIEWS
  • Published:
Russian Journal of Developmental Biology Aims and scope Submit manuscript

Abstract

Activated cells of human retinal pigment epithelium (RPE) are the main effector cells in the process of fibrosis, the main pathological manifestation of proliferative vitreoretinal diseases of the retina. In the case of rhegmatogenous retinal detachment, resting RPE cells are activated and gain the phenotype of fibroblast- and myofibroblast-like cells, which intensively proliferate and migrate to the epiretinal space, where they create a favorable microenvironment for the development of fibrosis and/or contribute to its progression. The increased contractility of cells eventually leads to traction retinal detachment and loss of visual acuity. To date, various cellular signals have been identified that promote the activation of RPE cells, such as transforming growth factor beta, fibroblast growth factor-2, platelet-derived growth factor, mitogen-activated protein kinase, Smads, and NF-κB. Therefore, studying the role of these factors and signaling pathways in the activation of RPE cells will contribute to the development of therapeutic strategies and provide new opportunities for the treatment of retinal diseases. The review summarizes current knowledge about stimulating factors and signaling pathways in regulating cellular and molecular mechanisms of dedifferentiation and epithelial-mesenchymal transition (EMT) of RPE cells, which were largely determined by studying the effects of various signaling molecules in vitro. In addition, the role of microRNAs in regulating the TGF-β signaling pathway and EMT is discussed, and promising therapeutic agents are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Adijanto, J., Castorino, J.J., Wang, Z.X., et al., Microphthalmia-associated transcription factor (MITF) promotes differentiation of human retinal pigment epithelium (RPE) by regulating microRNAs-204/211 expression, J. Biol. Chem., 2012, vol. 287, no. 24, pp. 20491–20503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ambati, J. and Fowler, B.J., Mechanisms of age-related macular degeneration, Neuron, 2012, vol. 75, no. 1, pp. 26–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ambati, J., Atkinson, J.P., and Gelfand, B.D., Immunology of age-related macular degeneration, Nat. Rev. Immunol., 2013, vol. 13, no. 6, pp. 438–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Amemiya, K., Haruta, M., Takahashi, M., et al., Adult human retinal pigment epithelial cells capable of differentiating into neurons, Biochem. Biophys. Res. Commun., 2004, vol. 316, no. 1, pp. 1–5.

    Article  CAS  PubMed  Google Scholar 

  5. Amin, R., Puklin, J.E., and Frank, R.N., Growth factor localization in choroidal neovascular membranes of age-related macular degeneration, Invest. Ophthalmol. Vis. Sci., 1994, vol. 35, no. 8, pp. 3178–3188.

    CAS  PubMed  Google Scholar 

  6. Anderson, D.H., Guerin, C.J., Hageman, G.S., et al., Distribution of transforming growth factor-β isoforms in the mammalian retina, J. Neurosci. Res., 1995, vol. 42, no. 1, pp. 63–79.

    Article  CAS  PubMed  Google Scholar 

  7. Andersson, E.R., Sandberg, R., and Lendahl, U., Notch signaling: simplicity in design, versatility in function, Development, 2011, vol. 138, no. 17, pp. 3593–3612.

    Article  CAS  PubMed  Google Scholar 

  8. Angers, S. and Moon, R.T., Proximal events in Wnt signal transduction, Nat. Rev. Mol. Cell Biol., 2009, vol. 10, no. 7, pp. 468–477.

    Article  CAS  PubMed  Google Scholar 

  9. Arnaud, E., Touriol., C., Boutonnet, C., et al., A new 34-kilodalton isoform of human fibroblast growth factor 2 is cap dependently synthesized by using a non-AUG start codon and behaves as a survival factor, Mol. Cell. Biol., 1999, vol. 19, no. 1, pp. 505–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bakiri, L., Macho-Maschler, S., Custic, I., et al., Fra-1/AP-1 induces EMT in mammary epithelial cells by modulating Zeb1/2 and TGFβ expression, Cell Death Differ., 2015, vol. 22, no. 2, pp. 336–350.

    Article  CAS  PubMed  Google Scholar 

  11. Banerjee, S., Savant, V., Scott, R.A.H., et al., Multiplex bead analysis of vitreous humor of patients with vitreoretinal disorders, Invest. Ophthalmol. Vis. Sci., 2007, vol. 48, no. 5, pp. 2203–2207.

    Article  PubMed  Google Scholar 

  12. Bao, Z.Z. and Cepko, C.L., The expression and function of notch pathway genes in the developing rat eye, J. Neurosci., 1997, vol. 17, no. 4, pp. 1425–1434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baudouin, C., Fredj-Reygrobellet, D., Brignole, F., et al., Growth factors in vitreous and subretinal fluid cells from patients with proliferative vitreoretinopathy, Ophthalmic Res., 1993, vol. 25, no. 1, pp. 52–59.

    Article  CAS  PubMed  Google Scholar 

  14. Bharti, K., Nguyen, M.-T.T., Skuntz, S., et al., The other pigment cell: specification and development of the pigmented epithelium of the vertebrate eye, Pigment Cell Res., 2006, vol. 19, no. 5, pp. 380–394.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Boles, N.C., Fernandes, M., Swigut, T., et al., Epigenomic and transcriptomic changes during human RPE EMT in a stem cell model of epiretinal membrane pathogenesis and prevention by nicotinamide, Stem Cell Rep., 2020, vol. 14, no. 4, pp. 631–647.

    Article  CAS  Google Scholar 

  16. Bost, L.M. and Hjelmeland, L.M., Cell density regulates differential production of bFGF transcripts, Growth Factors, 1993, vol. 9, no. 3, pp. 195–203.

    Article  CAS  PubMed  Google Scholar 

  17. Boureux, A., Vignal, E., Faure, S., and Fort, P., Evolution of the Rho family of Ras-like GTPases in eukaryotes, Mol. Biol. Evol., 2007, vol. 24, no. 1, pp. 203–216.

    Article  CAS  PubMed  Google Scholar 

  18. Bovolenta, P., Esteve, P., Ruiz, J.M., et al., Beyond Wnt inhibition: new functions of secreted Frizzled-related proteins in development and disease, J. Cell Sci., 2008, vol. 121, no. 6, pp. 737–746.

    Article  CAS  PubMed  Google Scholar 

  19. Bragdon, B., Moseychuk, O., Saldanha, S., et al., Bone morphogenetic proteins: a critical review, Cell. Signal., 2011, vol. 23, no. 4, pp. 609–620.

    Article  CAS  PubMed  Google Scholar 

  20. Buchholz, D.E., Pennington, B.O., Croze, R.H., et al., Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium, Stem Cells Transl. Med., 2013, vol. 2, no. 5, pp. 384–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bustelo, X.R., Sauzeau, V., and Berenjeno, I.M., GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo, BioEssays, 2007, vol. 29, no. 4, pp. 356–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bustos, R., Kolen, E.R., Braiterman, L., et al., Synapsin I is expressed in epithelial cells: localization to a unique trans-Golgi compartment, J. Cell Sci., 2001, vol. 114, pt. 20, pp. 3695–3704.

    Article  CAS  PubMed  Google Scholar 

  23. Caputto, B.L., Cardozo, GizziA.M., and Gil, G.A., c-Fos: an AP-1 transcription factor with an additional cytoplasmic, non-genomic lipid synthesis activation capacity, Biochim. Biophys. Acta, Mol. Cell Biol. Lipids, 2014, vol. 1841, no. 9, pp. 1241–1246.

    Article  CAS  Google Scholar 

  24. Carr, A.J., Vugler, A.A., Yu, L., et al., The expression of retinal cell markers in human retinal pigment epithelial cells and their augmentation by the synthetic retinoid fenretinide, Mol. Vis., 2011, vol. 17, pp. 1701–1715.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Casco-Robles, M.M., Islam, M.R., Inami, W., et al., Turning the fate of reprogramming cells from retinal disorder to regeneration by Pax6 in newts, Sci. Rep., 2016, vol. 6.

  26. Chen, X., Whitney, E.M., Gao, S.Y., and Yang, V.W., Transcriptional profiling of Krüppel-like factor 4 reveals a function in cell cycle regulation and epithelial differentiation, J. Mol. Biol., 2003, vol. 326, no. 3, pp. 665–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, H.C., Zhu, Y.T., Chen, S.Y., and Tseng, S.C., Wnt signaling induces epithelial-mesenchymal transition with proliferation in ARPE-19 cells upon loss of contact inhibition, Lab. Invest., 2012a, vol. 92, no. 5, pp. 676–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, H.C., Zhu, Y.T., Chen, S.Y., and Tseng, S.C.G., Selective activation of p120ctn-Kaiso signaling to unlock contact inhibition of ARPE-19 cells without epithelial-mesenchymal transition, PLoS One, 2012b, vol. 7, no. 5.

  29. Chen, Y.J., Tsai, R.K., Wu, W.C., et al., Enhanced PKCδ and ERK signaling mediate cell migration of retinal pigment epithelial cells synergistically induced by HGF and EGF, PLoS One, 2012c, vol. 7, no. 9, p. e44937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, X., Xiao, W., Wang, W., et al., The complex interplay between ERK1/2, TGFβ/Smad, and Jagged/Notch signaling pathways in the regulation of epithelial-mesenchymal transition in retinal pigment epithelium cells, PLoS One, 2014a, vol. 9, no. 5, p. e96365.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen, X., Ye, S., Xiao, W., et al., Differentially expressed microRNAs in TGFβ2-induced epithelial-mesenchymal transition in retinal pigment epithelium cells, Int. J. Mol. Med., 2014b, vol. 33, no. 5, pp. 1195–1200.

    Article  CAS  PubMed  Google Scholar 

  32. Chen, S., Yuan, M., Liu, Y., et al., Landscape of microRNA in the aqueous humour of proliferative diabetic retinopathy as assessed by next-generation sequencing, Clin. Exp. Ophthalmol., 2019, vol. 47, no. 7, pp. 925–936.

    Article  Google Scholar 

  33. Cheng, H.-C., Ho, T.-C., Chen, S.-L., et al., Troglitazone suppresses transforming growth factor beta-mediated fibrogenesis in retinal pigment epithelial cells, Mol. Vis., 2008, vol. 14, pp. 95–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chiba, C. and Mitashov, V., Cellular and molecular events in the adult newt retinal regeneration, in Strategies for Retinal Tissue Repair and Regeneration in Vertebrates: From Fish to Human, Chiba, C. and Mitashov, V., Eds., Trivandrum, India: Research Signpost, 2007, pp. 15–33.

    Google Scholar 

  35. Chiba, C., The retinal pigment epithelium: an important player of retinal disorders and regeneration, Exp. Eye Res., 2014, vol. 123, pp. 107–114.

    Article  CAS  PubMed  Google Scholar 

  36. Chien, H.W., Wang, K., Chang, Y.Y., et al., Kaempferol suppresses cell migration through the activation of the ERK signaling pathways in ARPE-19 cells, Environ. Toxicol., 2019, vol. 34, no. 3, pp. 312–318.

    Article  CAS  PubMed  Google Scholar 

  37. Choudhary, P., Dodsworth, B.T., Sidders, B., et al., A FOXM1 dependent mesenchymal-epithelial transition in retinal pigment epithelium cells, PLoS One, 2015, vol. 10, no. 6, p. e0130379.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chung, E.J., Chun, J.N., Jung, S.A., et al., TGF-β-stimulated aberrant expression of class III β-tubulin via the ERK signaling pathway in cultured retinal pigment epithelial cells, Biochem. Biophys. Res. Commun., 2011, vol. 415, no. 2, pp. 367–372.

    Article  CAS  PubMed  Google Scholar 

  39. Connor, T.B., Roberts, A.B., Sporn, M.B., et al., Correlation of fibrosis and transforming growth factor-β type 2 levels in the eye, J. Clin. Invest., 1989, vol. 83, no. 5, pp. 1661–1666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cook, B., Lewis, G.P., Fisher, S.K., and Adler, R., Apoptotic photoreceptor degeneration in experimental retinal detachment, Invest. Ophthalmol. Vis. Sci., 1995, vol. 36, no. 6, pp. 990–996.

    CAS  PubMed  Google Scholar 

  41. Corral, R.D., Del Olivera-Martinez, I., Goriely, A., et al., Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension, Neuron, 2003, vol. 40, no. 1, pp. 65–79.

    Article  Google Scholar 

  42. Cui, L., Lyu, Y., Jin, X., et al., miR-194 suppresses epithelial-mesenchymal transition of retinal pigment epithelial cells by directly targeting ZEB1, Ann. Transl. Med., 2019, vol. 7, no. 23, p. 751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Daulat, A.M. and Borg, J.-P., Wnt/planar cell polarity signaling: new opportunities for cancer treatment, Trends Cancer, 2017, vol. 3, no. 2, pp. 113–125.

    Article  CAS  PubMed  Google Scholar 

  44. Deji, Q.Z., Yan, F., Zhaba, W.D., et al., Cross-talk between microRNA-let7c and transforming growth factor-β2 during epithelial-to-mesenchymal transition of retinal pigment epithelial cells, Int. J. Ophthalmol., 2020, vol. 13, no. 5, pp. 693–700.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ding, V.M.Y., Ling, L., Natarajan, S., et al., FGF-2 modulates Wnt signaling in undifferentiated hESC and iPS cells through activated PI3-K/GSK3β signaling, J. Cell Physiol., 2010, vol. 225, no. 2, pp. 417–428.

    Article  CAS  PubMed  Google Scholar 

  46. Donato, L., Bramanti, P., Scimone, C., et al., miRNA expression profile of retinal pigment epithelial cells under oxidative stress conditions, FEBS Open Bio, 2018, vol. 8, no. 2, pp. 219–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dudley, A.T., Lyons, K.M., and Robertson, E.J., A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye, Genes Dev., 1995, vol. 9, no. 22, pp. 2795–2807.

    Article  CAS  PubMed  Google Scholar 

  48. Dvashi, Z., Goldberg, M., Adir, O., et al., TGF-β1 induced transdifferentiation of RPE cells is mediated by TAK1, PLoS One, 2015, vol. 10, no. 4.

  49. El-Ghrably, I.A., Dua, H.S., Orr, G.M., et al., Intravitreal invading cells contribute to vitreal cytokine milieu in proliferative vitreoretinopathy, Br. J. Ophthalmol., 2001, vol. 85, no. 4, pp. 461–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Engelhardt, M., Bogdahn, U., and Aigner, L., Adult retinal pigment epithelium cells express neural progenitor properties and the neuronal precursor protein doublecortin, Brain Res., 2005, vol. 1040, nos. 1–2, pp. 98–111.

    Article  CAS  PubMed  Google Scholar 

  51. Esser, P., Weller, M., Bresgen, M., et al., The effects of basic fibroblast growth factor on bovine retinal pigment epithelium in vitro, Ger. J. Ophthalmol., 1992, vol. 1, no. 1, pp. 58–61.

    CAS  PubMed  Google Scholar 

  52. Esteve, P., Trousse, F., Rodriguez, J., and Bovolenta, P., SFRP1 modulates retina cell differentiation through a β-catenin-independent mechanism, J. Cell Sci., 2003, vol. 116, no. 12, pp. 2471–2481.

    Article  CAS  PubMed  Google Scholar 

  53. Evans, P.M., Chen, X., Zhang, W., and Liu, C., KLF4 interacts with beta-catenin/TCF4 and blocks p300/CBP recruitment by beta-catenin, Mol. Cell. Biol., 2010, vol. 30, no. 2, pp. 372–381.

    Article  CAS  PubMed  Google Scholar 

  54. Falo-Sanjuan, J. and Bray, S.J., Decoding the Notch signal, Dev. Growth Differ., 2020, vol. 62, no. 1, pp. 4–14.

    Article  PubMed  Google Scholar 

  55. Fasler-Kan, E., Wunderlich, K., Hildebrand, P., et al., Activated STAT3 in choroidal neovascular membranes of patients with age-related macular degeneration, Ophthalmologica, 2005, vol. 219, no. 4, pp. 214–221.

    Article  CAS  PubMed  Google Scholar 

  56. Ferguson, H.R., Smith, M.P., and Francavilla, C., Fibroblast growth factor receptors (FGFRs) and noncanonical partners in cancer signaling, Cells, 2021, vol. 10, no. 5, p. 1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Finnemann, S.C. and Chang, Y., Photoreceptor–RPE interactions, in Visual Transduction and Non-Visual Light Perception, Humana Press, 2008, pp. 67–86.

    Google Scholar 

  58. Friedlander, M., Fibrosis and diseases of the eye, J. Clin. Invest., 2007, vol. 117, no. 3, pp. 576–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fuchs, H.R., Meister, R., Lotke, R., and Framme, C., The microRNAs miR-302d and miR-93 inhibit TGFB-mediated EMT and VEGFA secretion from ARPE-19 cells, Exp. Eye Res., 2020, vol. 201, p. 108258.

    Article  CAS  PubMed  Google Scholar 

  60. Fuhrmann, S., Zou, C.J., and Levine, E.M., Retinal pigment epithelium development, plasticity, and tissue homeostasis, Exp. Eye Res., 2014, vol. 123, pp. 141–150.

    Article  CAS  PubMed  Google Scholar 

  61. Fujimura, N., Taketo, M.M., Mori, M., et al., Spatial and temporal regulation of wnt/beta-catenin signaling is essential for development of the retinal pigment epithelium, Dev. Biol., 2009, vol. 334, no. 1, pp. 31–45.

    Article  CAS  PubMed  Google Scholar 

  62. Furuta, Y. and Hogan, B.L.M., BMP4 is essential for lens induction in the mouse embryo, Genes Dev., 1998, vol. 12, no. 23, pp. 3764–3775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Galy, A., Néron, B., Planque, N., et al., Activated MAPK/ERK kinase (MEK-1) induces transdifferentiation of pigmented epithelium into neural retina, Dev. Biol., 2002, vol. 248, no. 2, pp. 251–264.

    CAS  PubMed  Google Scholar 

  64. Ganti, R., Hunt, R.C., Parapuram, S.K., and Hunt, D.M., Vitreous modulation of gene expression in low-passage human retinal pigment epithelial cells, Invest. Ophthalmol. Vis. Sci., 2007, vol. 48, no. 4, pp. 1853–1863.

    Article  PubMed  Google Scholar 

  65. Garcia-Hoyos, M., Cantalapiedra, D., Arroyo, C., et al., Evaluation of SFRP1 as a candidate for human retinal dystrophies, Mol. Vis., 2004, vol. 10, pp. 426–431.

    CAS  PubMed  Google Scholar 

  66. Geller, S.F., Lewis, G.P., and Fisher, S.K., FGFR1, signaling, and AP-1 expression after retinal detachment: reactive Müller and RPE cells, Invest. Ophthalmol. Vis. Sci., 2001, vol. 42, no. 6, pp. 1363–1369.

    CAS  PubMed  Google Scholar 

  67. Ghosh, S., Shang, P., Terasaki, H., et al., A role for βA3/A1-crystallin in type 2 EMT of RPE cells occurring in dry age-related macular degeneration, Invest. Ophthalmol. Vis. Sci., 2018, vol. 59, no. 4, pp. AMD104–AMD113.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Glazer, R.I., Wang, X.Y., Yuan, H., and Yin, Y., Musashil: a stem cell marker no longer in search of a function, Cell Cycle, 2008, vol. 7, no. 17, pp. 2635–2639.

    Article  CAS  PubMed  Google Scholar 

  69. Go, Y.M., Zhang, J., Fernandes, J., et al., MTOR-initiated metabolic switch and degeneration in the retinal pigment epithelium, FASEB J., 2020, vol. 34, no. 9, pp. 12502–12520.

    Article  CAS  PubMed  Google Scholar 

  70. Gonzalez, D.M. and Medici, D., Signaling mechanisms of the epithelial-mesenchymal transition, Sci. Signal., 2014, vol. 7, no. 344, p. re8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Grisanti, S. and Guidry, C., Transdifferentiation of retinal pigment epithelial cells from epithelial to mesenchymal phenotype, Invest. Ophthalmol. Vis. Sci., 1995, vol. 36, no. 2, pp. 391–405.

    CAS  PubMed  Google Scholar 

  72. Györfi, A.H., Matei, A.E., and Distler, J.H.W., Targeting TGF-β signaling for the treatment of fibrosis, Matrix Biol., 2018, vol. 68-69, pp. 8–27.

    Article  PubMed  Google Scholar 

  73. Hackam, A.S., The Wnt signaling pathway in retinal degenerations, IUBMB Life, 2005, vol. 57, no. 6, pp. 381–388.

    Article  CAS  PubMed  Google Scholar 

  74. Hageman, G.S., Kirchoff-Rempe, M.A., Lewis, G.P., et al., Sequestration of basic fibroblast growth factor in the primate retinal interphotoreceptor matrix, Proc. Natl. Acad. Sci. U. S. A., 1991, vol. 88, no. 15, pp. 6706–6710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hardwick, C., Feist, R., Morris, R., et al., Tractional force generation by porcine Müller cells: stimulation by growth factors in human vitreous, Invest. Ophthalmol. Vis. Sci., 1997, vol. 38, no. 1, pp. 2053–2063.

    CAS  PubMed  Google Scholar 

  76. Hazim, R.A., Volland, S., Yen, A., et al., Rapid differentiation of the human RPE cell line, ARPE-19, induced by nicotinamide, Exp. Eye Res., 2019, vol. 179, pp. 18–24.

    Article  CAS  PubMed  Google Scholar 

  77. La Heij, E.C., Van De Waarenburg, M.P.H., Blaauwgeers, H.G.T., et al., Basic fibroblast growth factor, glutamine synthetase, and interleukin-6 in vitreous fluid from eyes with retinal detachment complicated by proliferative vitreoretinopathy, Am. J. Ophthalmol., 2002, vol. 134, no. 3, pp. 367–375.

    Article  CAS  PubMed  Google Scholar 

  78. Hernández, C., Burgos, R., Cantón, A., et al., Vitreous levels of vascular cell adhesion molecule and vascular endothelial growth factor in patients with proliferative diabetic retinopathy: a case-control study, Diabetes Care, 2001, vol. 24, no. 3, pp. 516–521.

    Article  PubMed  Google Scholar 

  79. Horn, Z., Papachristou, P., Shariatmadari, M., et al., Wnt7a overexpression delays beta-tubulin III expression in transgenic mouse embryos, Brain Res., 2007, vol. 1130, no. 1, pp. 67–72.

    Article  CAS  PubMed  Google Scholar 

  80. Huang, X., Wei, Y., Ma, H., and Zhang, S., Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells, Biochem. Biophys. Res. Commun., 2012, vol. 419, no. 2, pp. 395–400.

    Article  CAS  PubMed  Google Scholar 

  81. Huang, L., Zhang, C., Su, L., and Song, Z., GSK3β attenuates TGF-β1 induced epithelial–mesenchymal transition and metabolic alterations in ARPE-19 cells, Biochem. Biophys. Res. Commun., 2017, vol. 486, no. 3, pp. 744–751.

    Article  CAS  PubMed  Google Scholar 

  82. Hunt, D.M., Chen, W.H., and Hunt, R.C., Vitreous treatment of retinal pigment epithelial cells results in decreased expression of FGF-2, Invest. Ophthalmol. Vis. Sci., 1998, vol. 39, no. 11, pp. 2111–2120.

    CAS  PubMed  Google Scholar 

  83. Huynh, L.K., Hipolito, C.J., and Dijke Ten, P., A perspective on the development of TGF-β inhibitors for cancer treatment, Biomolecules, 2019, vol. 9, no. 11.

  84. Idelson, M., Alper, R., Obolensky, A., et al., Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells, Cell Stem Cell, 2009, vol. 5, no. 4, pp. 396–408.

    Article  CAS  PubMed  Google Scholar 

  85. Ishikawa, K., He, S., Terasaki, H., et al., Resveratrol inhibits epithelial-mesenchymal transition of retinal pigment epithelium and development of proliferative vitreoretinopathy, Sci. Rep., 2015, vol. 5.

  86. Iso, T., Kedes, L., and Hamamori, Y., HES and HERP families: multiple effectors of the Notch signaling pathway, J. Cell Physiol., 2003, vol. 194, no. 3, pp. 237–255.

    Article  CAS  PubMed  Google Scholar 

  87. Jaime-Soguero, A., de Oliveira, W., and Lluis, F., The pleiotropic effects of the canonical Wnt pathway in early development and pluripotency, Genes (Basel), 2018, vol. 9, no. 2, p. pii:E93.

  88. Jayaram, H., Phillips, J.I., Lozano, D.C., et al., Comparison of microRNA expression in aqueous humor of normal and primary open-angle glaucoma patients using PCR arrays: a pilot study, Invest. Opthalmol. Vis. Sci., 2017, vol. 58, no. 7, p. 2884.

    Article  CAS  Google Scholar 

  89. Jiang, C., Xie, P., Sun, R., et al., C-Jun-mediated microRNA-302d-3p induces RPE dedifferentiation by targeting p21Waf1/Cip1 article, Cell Death Dis., 2018, vol. 9, no. 5.

  90. Jones, S.E., Jomary, C., Grist, J., et al., Modulated expression of secreted Frizzled-related proteins in human retinal degeneration, Neuroreport, 2000, vol. 11, no. 18, pp. 3963–3967.

    Article  CAS  PubMed  Google Scholar 

  91. Jun, J.H. and Joo, C.K., MicroRNA-124 controls transforming growth factor β1–induced epithelial–mesenchymal transition in the retinal pigment epithelium by targeting RHOG, Invest. Ophthalmol. Vis. Sci., 2016, vol. 57, no. 1, pp. 12–20.

    CAS  PubMed  Google Scholar 

  92. Kashani, A.H., Lebkowski, J.S., Rahhal, F.M., et al., A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration, Sci. Transl. Med., 2018, vol. 10, no. 435, p. eaao4097.

  93. Katoh, M. and Katoh, M., Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades, Cancer Biol. Ther., 2006, vol. 5, no. 9, pp. 1059–1064.

    Article  CAS  PubMed  Google Scholar 

  94. Katsetos, C.D., Herman, M.M., and Mörk, S.J., Class III β-tubulin in human development and cancer, Cell Motil. Cytoskeleton, 2003, vol. 55, no. 2, pp. 77–96.

    Article  CAS  PubMed  Google Scholar 

  95. Katsura, Y., Okano, T., Noritake, M., et al., Hepatocyte growth factor in vitreous fluid of patients with proliferative diabetic retinopathy and other retinal disorders, Diabetes Care, 1998, vol. 21, no. 10, pp. 1759–1763.

    Article  CAS  PubMed  Google Scholar 

  96. Kauppinen, A., Paterno, J.J., Blasiak, J., et al., Inflammation and its role in age-related macular degeneration, Cell. Mol. Life Sci., 2016, vol. 73, no. 9, pp. 1765–1786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Khaliq, A., Jarvis-Evans, J., McLeod, D., and Boulton, M., Oxygen modulates the response of the retinal pigment epithelium to basic fibroblast growth factor and epidermal growth factor by receptor regulation, Invest. Ophthalmol. Vis. Sci., 1996, vol. 37, no. 2, pp. 436–443.

    CAS  PubMed  Google Scholar 

  98. Khera, S., Tiwari, A., Srinivasan, R., et al., Molecular and morphological evidence for cadaver vitreous-stimulated transformation of differentiation-competent retinal pigment epithelial cells into neuron-like cells, Curr. Eye Res., 2012, vol. 37, no. 7, pp. 606–616.

    Article  CAS  PubMed  Google Scholar 

  99. Kim, J.H., Park, S., Chung, H., and Oh, S., Wnt5a attenuates the pathogenic effects of the Wnt/β-catenin pathway in human retinal pigment epithelial cells via down-regulating ß-catenin and Snail, BMB Rep., 2015, vol. 48, no. 9, pp. 525–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kim, S.J., Kim, Y.S., Kim, J.H., et al., Activation of ERK1/2-mTORC1-NOX4 mediates TGF-β1-induced epithelial-mesenchymal transition and fibrosis in retinal pigment epithelial cells, Biochem. Biophys. Res. Commun., 2020, vol. 529, no. 3, pp. 747–752.

    Article  CAS  PubMed  Google Scholar 

  101. Kita, T., Hata, Y., Kano, K., et al., Transforming growth factor-β2 and connective tissue growth factor in proliferative vitreoretinal diseases: possible involvement of hyalocytes and therapeutic potential of rho kinase inhibitor, Diabetes, 2007a, vol. 56, no. 1, pp. 231–238.

    Article  CAS  PubMed  Google Scholar 

  102. Kita, T., Hata, Y., Miura, M., et al., Functional characteristics of connective tissue growth factor on vitreoretinal cells, Diabetes, 2007b, vol. 56, no. 5, pp. 1421–1428.

    Article  CAS  PubMed  Google Scholar 

  103. Kita, T., Hata, Y., Arita, R., et al., Role of TGF-β in proliferative vitreoretinal diseases and ROCK as a therapeutic target, Proc. Natl. Acad. Sci. U. S. A., 2008, vol. 105, no. 45, pp. 17504–17509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kole, C., Klipfel, L., Yang, Y., et al., Otx2-genetically modified retinal pigment epithelial cells rescue photoreceptors after transplantation, Mol. Ther., 2018, vol. 26, no. 1, pp. 219–237.

    Article  CAS  PubMed  Google Scholar 

  105. Komiya, Y. and Habas, R., Wnt signal transduction pathways, Organogenesis, 2008, vol. 4, no. 2, pp. 68–75.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kutty, R.K., Samuel, W., Boyce, K., et al., Proinflammatory cytokines decrease the expression of genes critical for RPE function, Mol. Vis., 2016, vol. 22, pp. 1156–1168.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Kuznetsova, A.V., Grigoryan, E.N., and Aleksandrova, M.A., Human adult retinal pigment epithelial cells as potential cell source for retina recovery, Cell Tissue Biol., 2011, vol. 5, no. 5, pp. 495–502.

    Article  Google Scholar 

  108. Kuznetsova, A.V., Kurinov, A.M., and Aleksandrova, M.A., Cell models to study regulation of cell transformation in pathologies of retinal pigment epithelium, J. Ophthalmol., 2014, vol. 2014, pp. 1–18.

    Article  Google Scholar 

  109. Kuznetsova, A.V., Kurinov, A.M., Chentsova, E.V., et al., Effect of hrWnt7a on human retinal pigment epithelial cells in vitro, Bull. Exp. Biol. Med., 2015, vol. 159, no. 4, pp. 534–540.

    Article  CAS  PubMed  Google Scholar 

  110. Kuznetsova, A., Aleksandrova, M., Kurinov, A., et al., Plasticity of adult human retinal pigment epithelial cells, Int. J. Clin. Exp. Med., 2016, vol. 9, no. 11, pp. 20892–20906.

    CAS  Google Scholar 

  111. Kuznetsova, A.V., Kurinov, A.M., Rzhanova, L.A., and Aleksandrova, M.A., Mechanisms of dedifferentiation of adult human retinal pigment epithelial cells in vitro. morphological and molecular genetic analysis, Cell Tissue Biol., 2019a, vol. 13, no. 2, pp. 107–119.

    Article  Google Scholar 

  112. Kuznetsova, A.V., Rzhanova, L.A., Kurinov, A.M., and Aleksandrova, M.A., Effect of basic fibroblast growth factor on signaling pathways in adult human retinal pigment epithelial cells, Cell Tissue Biol., 2019b, vol. 13, no. 4, pp. 292–304.

    Article  Google Scholar 

  113. Kvanta, A., Expression and secretion of transforming growth factor-β in transformed and nontransformed retinal pigment epithelial cells, Ophthalmic Res., 1994, vol. 26, no. 6, pp. 361–367.

    Article  CAS  PubMed  Google Scholar 

  114. Lad, E.M., Cheshier, S.H., and Kalani, M.Y.S., Wnt-signaling in retinal development and disease, Stem Cells Dev., 2009, vol. 18, no. 1, pp. 7–16.

    Article  CAS  PubMed  Google Scholar 

  115. Lam, J.K.W., Chow, M.Y.T., Zhang, Y., and Leung, S.W.S., siRNA versus miRNA as therapeutics for gene silencing, Mol. Ther., Nucleic Acids, 2015, vol. 4, no. 9, p. e252.

    Article  CAS  PubMed  Google Scholar 

  116. Lee, H.Y., Wroblewski, E., Philips, G.T., et al., Multiple requirements for Hes 1 during early eye formation, Dev. Biol., 2005, vol. 284, no. 2, pp. 464–478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lee, H., O’Meara, S.J., O’Brien, C., and Kane, R., The role of gremlin, a BMP antagonist, and epithelial-to-mesenchymal transition in proliferative vitreoretinopathy, Invest. Ophthalmol. Vis. Sci., 2007, vol. 48, no. 9, pp. 4291–4299.

    Article  PubMed  Google Scholar 

  118. Lee, J., Ko, M., and Joo, C.-K., Rho plays a key role in TGF-beta1-induced cytoskeletal rearrangement in human retinal pigment epithelium, J. Cell Physiol., 2008, vol. 216, no. 2, pp. 520–526.

    Article  CAS  PubMed  Google Scholar 

  119. Lei, H., Rheaume, M.-A., and Kazlauskas, A., Recent developments in our understanding of how platelet-derived growth factor (PDGF) and its receptors contribute to proliferative vitreoretinopathy, Exp. Eye Res., 2010, vol. 90, no. 3, pp. 376–381.

    Article  CAS  PubMed  Google Scholar 

  120. Li, H., Wang, H., Wang, F., et al., Snail involves in the transforming growth factor β1-mediated epithelial–mesenchymal transition of retinal pigment epithelial cells, PLoS One, 2011, vol. 6, no. 8, p. e23322.

  121. Li, J., Zheng, H., Yu, F., et al., Deficiency of the Kruppel-like factor KLF4 correlates with increased cell proliferation and enhanced skin tumorigenesis, Carcinogenesis, 2012, vol. 33, no. 6, pp. 1239–1246.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Li, M., Li, H., Liu, X., et al., MicroRNA-29b regulates TGF-β1-mediated epithelial–mesenchymal transition of retinal pigment epithelial cells by targeting AKT2, Exp. Cell Res., 2016, vol. 345, no. 2, pp. 115–124.

    Article  CAS  PubMed  Google Scholar 

  123. Li, X., The FGF metabolic axis, Front. Med., 2019, vol. 13, no. 5, pp. 511–530.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Liang, C.-M., Tai, M.-C., Chang, Y.-H., et al., Glucosamine inhibits epithelial-to-mesenchymal transition and migration of retinal pigment epithelium cells in culture and morphologic changes in a mouse model of proliferative vitreoretinopathy, Acta Ophthalmol., 2011, vol. 89, no. 6, pp. e505–e514.

    Article  PubMed  Google Scholar 

  125. Liu, Y., Xin, Y., Ye, F., et al., Taz-tead1 links cell-cell contact to Zeb1 expression, proliferation, and dedifferentiation in retinal pigment epithelial cells, Invest. Ophthalmol. Vis. Sci., 2010, vol. 51, no. 7, pp. 3372–3378.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Liu, Y., Cao, G.F., Xue, J., et al., Tumor necrosis factor-alpha (TNF-α)-mediated in vitro human retinal pigment epithelial (RPE) cell migration mainly requires Akt/mTOR complex 1 (mTORC1), but not mTOR complex 2 (mTORC2) signaling, Eur. J. Cell Biol., 2012, vol. 91, no. 9, pp. 728–737.

    Article  CAS  PubMed  Google Scholar 

  127. Liu, W., Jin, G., Long, C., et al., Blockage of Notch signaling inhibits the migration and proliferation of retinal pigment epithelial cells, Sci. World J., 2013, vol. 2013, p. 178708.

    Article  Google Scholar 

  128. Liu, X., Yun, F., Shi, L., et al., Roles of signaling pathways in the epithelial-mesenchymal transition in cancer, Asian Pac. J. Cancer Prev., 2015, vol. 16, no. 15, pp. 6201–6206.

    Article  PubMed  Google Scholar 

  129. Loda, A., Turati, M., Semeraro, F., et al., Exploring the FGF/FGFR system in ocular tumors: new insights and perspectives, Int. J. Mol. Sci., 2022, vol. 23, no. 7.

  130. Lu, W., Schneider, M., Neumann, S., et al., Nesprin interchain associations control nuclear size, Cell. Mol. Life Sci., 2012, vol. 69, no. 20, pp. 3493–3509.

    Article  CAS  PubMed  Google Scholar 

  131. Lueck, K., Carr, A.-J.F., Stampoulis, D., et al., Regulation of retinal pigment epithelial cell phenotype by annexin A8, Sci. Rep., 2017, vol. 7, no. 1, p. 4638.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Lueck, K., Carr, A.-J.F., Yu, L., et al., Annexin A8 regulates Wnt signaling to maintain the phenotypic plasticity of retinal pigment epithelial cells, Sci. Rep., 2020, vol. 10, no. 1, p. 1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Luo, G., Hofmann, C., Bronckers, A.L., et al., BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning, Genes Dev., 1995, vol. 9, no. 22, pp. 2808–2820.

    Article  CAS  PubMed  Google Scholar 

  134. Luo, X., Gu, S., Zhang, Y., and Zhang, J., Kinsenoside ameliorates oxidative stress-induced RPE cell apoptosis and inhibits angiogenesis via Erk/p38/NF-κB/VEGF signaling, Front. Pharmacol., 2018, vol. 9, no. 240.

  135. Luo, M. and Chen, Y., Application of stem cell-derived retinal pigmented epithelium in retinal degenerative diseases: present and future, Int. J. Ophthalmol., 2018, vol. 11, no. 1, pp. 150–159.

    PubMed  PubMed Central  Google Scholar 

  136. Lutty, G.A., Merges, C., Threlkeld, A.B., et al., Heterogeneity in localization of isoforms of TGF-beta in human retina, vitreous, and choroid, Invest. Ophthalmol. Vis. Sci., 1993, vol. 34, no. 3, pp. 477–487.

    CAS  PubMed  Google Scholar 

  137. Markitantova, Y.V., Avdonin, P.P., and Grigoryan, E.N., FGF2 signaling pathway components in tissues of the posterior eye sector in the adult newt Pleurodeles waltl, Biol. Bull. (Moscow), 2014, vol. 41, no. 4, pp. 297–305.

    Article  CAS  Google Scholar 

  138. Martínez-Morales, J.R., Rodrigo, I., and Bovolenta, P., Eye development: a view from the retina pigmented epithelium, BioEssays, 2004, vol. 26, no. 7, pp. 766–777.

    Article  PubMed  Google Scholar 

  139. Martinez, B. and Peplow, P., MicroRNAs as biomarkers of diabetic retinopathy and disease progression, Neural Regen. Res., 2019, vol. 14, no. 11, p. 1858.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Mathura, J.R., Jafari, N., Chang, J.T., et al., Bone morphogenetic proteins-2 and -4: negative growth regulators in adult retinal pigmented epithelium, Invest. Ophthalmol. Vis. Sci., 2000, vol. 41, no. 2, pp. 592–600.

    PubMed  Google Scholar 

  141. Meng, Y., Ren, Z., Xu, F., et al., Nicotinamide promotes cell survival and differentiation as kinase inhibitor in human pluripotent stem cells, Stem Cell Rep., 2018, vol. 11, no. 6, pp. 1347–1356.

    Article  CAS  Google Scholar 

  142. Milyushina, L.A., Kuznetsova, A.V., Grigoryan, E.N., and Aleksandrova, M.A., Phenotypic plasticity of retinal pigment epithelial cells from adult human eye in vitro, Bull. Exp. Biol. Med., 2011, vol. 151, no. 4, pp. 506–511.

    Article  CAS  PubMed  Google Scholar 

  143. Mitsuhiro, M.R.K., Eguchi, S., and Yamashita, H., Regulation mechanisms of retinal pigment epithelial cell migration by the TGF-β superfamily, Acta Ophthalmol. Scand., 2003, vol. 81, no. 6, pp. 630–638.

    Article  CAS  PubMed  Google Scholar 

  144. Mitsuishi, Y., Hasegawa, H., Matsuo, A., et al., Human CRB2 inhibits γ-secretase cleavage of amyloid precursor protein by binding to the presenilin complex, J. Biol. Chem., 2010, vol. 285, no. 20, pp. 14920–14931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Miyazono, K. and Shimanuki, T., Bone morphogenetic protein receptors and actions, in Principles of Bone Biology, Elsevier, 2008, pp. 1177–1196.

    Google Scholar 

  146. Moon, C.H., Cho, H., Kim, Y.K., and Park, T.K., Nestin expression in the adult mouse retina with pharmaceutically induced retinal degeneration, J. Korean Med. Sci., 2017a, vol. 32, no. 2, pp. 343–351.

    Article  CAS  PubMed  Google Scholar 

  147. Moon, K., Lee, H.G., Baek, W.K., et al., Bortezomib inhibits proliferation, migration, and TGF-β1-induced epithelial-mesenchymal transition of RPE cells, Mol. Vis., 2017b, vol. 23, pp. 1029–1038.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Müller, F., Rohrer, H., and Vogel-Höpker, A., Bone morphogenetic proteins specify the retinal pigment epithelium in the chick embryo, Development, 2007, vol. 134, no. 19, pp. 3483–3493.

    Article  PubMed  Google Scholar 

  149. Nassar, K., Grisanti, S., Tura, A., et al., A TGF-β receptor 1 inhibitor for prevention of proliferative vitreoretinopathy, Exp. Eye Res., 2014, vol. 123, pp. 72–86.

    Article  CAS  PubMed  Google Scholar 

  150. Nguyen, T. and Mège, R.M., N-Cadherin and fibroblast growth factor receptors crosstalk in the control of developmental and cancer cell migrations, Eur. J. Cell Biol., 2016, vol. 95, no. 11, pp. 415–426.

    Article  CAS  PubMed  Google Scholar 

  151. Nieto, M.A., Huang, R.Y.Y.J., Jackson, R.A.A., and Thiery, J.P.P., EMT: 2016, Cell, 2016, vol. 166, no. 1, pp. 21–45.

    Article  CAS  PubMed  Google Scholar 

  152. Nishimoto, S. and Nishida, E., MAPK signalling: ERK5 versus ERK1/2, EMBO Rep., 2006, vol. 7, no. 8, pp. 782–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nugent, M.A. and Iozzo, R.V., Fibroblast growth factor-2, Int. J. Biochem. Cell Biol., 2000, vol. 32, no. 2, pp. 115–120.

    Article  CAS  PubMed  Google Scholar 

  154. Nusse, R. and Clevers, H., Wnt/β-catenin signaling, disease, and emerging therapeutic modalities, Cell, 2017, vol. 169, no. 6, pp. 985–999.

    Article  CAS  PubMed  Google Scholar 

  155. Opas, M. and Dziak, E., bFGF-induced transdifferentiation of rpe to neuronal progenitors is regulated by the mechanical properties of the substratum, Dev. Biol., 1994, vol. 161, no. 2, pp. 440–454.

    Article  CAS  PubMed  Google Scholar 

  156. Ornitz, D.M. and Itoh, N., The fibroblast growth factor signaling pathway, Wiley Interdiscip. Rev. Biol., 2015, pp. 215–266.

  157. Osumi, N., Shinohara, H., Numayama-Tsuruta, K., and Maekawa, M., Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator, Stem Cells, 2008, vol. 26, no. 7, pp. 1663–1672.

    Article  CAS  PubMed  Google Scholar 

  158. Parapuram, S.K., Chang, B., Li, L., et al., Differential effects of TGFβ and vitreous on the transformation of retinal pigment epithelial cells, Invest. Ophthalmol. Vis. Sci., 2009, vol. 50, no. 12, pp. 5965–5974.

    Article  PubMed  Google Scholar 

  159. Pellissier, L.P., Alves, C.H., Quinn, P.M., et al., Targeted ablation of Crb1 and Crb2 in retinal progenitor cells mimics Leber congenital amaurosis, PLoS Genet., 2013, vol. 9, no. 12, p. e1003976.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Person, F., Wilczak, W., Hube-Magg, C., et al., Prevalence of βIII-tubulin (TUBB3) expression in human normal tissues and cancers, Tumor Biol., 2017, vol. 39, no. 10, pp. 1–11.

    Article  Google Scholar 

  161. Petrou, P.A., Cunningham, D., Shimel, K., et al., Intravitreal sirolimus for the treatment of geographic atrophy: results of a phase I/II clinical trial, Invest. Ophthalmol. Vis. Sci., 2014, vol. 56, no. 1, pp. 330–338.

    Article  PubMed  Google Scholar 

  162. Pimiento, J.M., Chen, D.-T., Centeno, B.A., et al., Annexin A8 is a prognostic marker and potential therapeutic target for pancreatic cancer, Pancreas, 2015, vol. 44, no. 1, pp. 122–127.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Pittack, C., Grunwald, G.B., and Reh, T.A., Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryos, Development, 1997, vol. 124, no. 4, pp. 805–816.

    Article  CAS  PubMed  Google Scholar 

  164. Priglinger, S.G., Alge, C.S., Neubauer, A.S., et al., TGF‑β2-induced cell surface tissue transglutaminase increases adhesion and migration of RPE cells on fibronectin through the gelatin-binding domain, Invest. Ophthalmol. Vis. Sci., 2004, vol. 45, no. 3, pp. 955–963.

    Article  PubMed  Google Scholar 

  165. Qian, X., Anzovino, A., Kim, S., et al., N-cadherin/FGFR promotes metastasis through epithelial-to-mesenchymal transition and stem/progenitor cell-like properties, Oncogene, 2014, vol. 33, no. 26, pp. 3411–3421.

    Article  CAS  PubMed  Google Scholar 

  166. Radeke, M.J., Radeke, C.M., Shih, Y.-H., et al., Restoration of mesenchymal retinal pigmented epithelial cells by TGFβ pathway inhibitors: implications for age-related macular degeneration, Genome Med., 2015, vol. 7, no. 1, p. 58.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Rajendran, R., Sudha, D., Chidambaram, S., et al., Retinoschisis and Norrie disease: a missing link, BMC Res. Notes, 2021, vol. 14, no. 1, p. 204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Rak, D.J., Hardy, K.M., Jaffe, G.J., and McKay, B.S., Ca++-switch induction of RPE differentiation, Exp. Eye Res., 2006, vol. 82, no. 4, pp. 648–656.

    Article  CAS  PubMed  Google Scholar 

  169. Robertson, I.B. and Rifkin, D.B., Regulation of the bioavailability of TGF-β and TGF-β-related proteins, Cold Spring Harb. Perspect. Biol., 2016, vol. 8, no. 6, p. a021907.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Rodriguez, J., Esteve, P., Weinl, C., et al., SFRP1 regulates the growth of retinal ganglion cell axons through the Fz2 receptor, Nat. Neurosci., 2005, vol. 8, no. 10, pp. 1301–1309.

    Article  CAS  PubMed  Google Scholar 

  171. Rosenthal, R., Malek, G., Salomon, N., et al., The fibroblast growth factor receptors, FGFR-1 and FGFR-2, mediate two independent signalling pathways in human retinal pigment epithelial cells, Biochem. Biophys. Res. Commun., 2005, vol. 337, no. 1, pp. 241–247.

    Article  CAS  PubMed  Google Scholar 

  172. Roybal, C.N., Velez, G., Toral, M.A., et al., Personalized proteomics in proliferative vitreoretinopathy implicate hematopoietic cell recruitment and mTOR as a therapeutic target, Am. J. Ophthalmol., 2018, vol. 186, pp. 152–163.

    Article  CAS  PubMed  Google Scholar 

  173. Saika, S., Yamanaka, O., Ikeda, K., et al., Inhibition of p38map kinase suppresses fibrotic reaction of retinal pigment epithelial cells, Lab. Invest., 2005, vol. 85, no. 7, pp. 838–850.

    Article  CAS  PubMed  Google Scholar 

  174. Saini, J.S., Corneo, B., Miller, J.D., et al., Nicotinamide ameliorates disease phenotypes in a human iPSC model of age-related macular degeneration, Cell Stem Cell, 2017, vol. 20, no. 5, pp. 635–647, e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Sakai, T., Kuno, N., Takamatsu, F., et al., Prolonged protective effect of basic fibroblast growth factor-impregnated nanoparticles in royal college of surgeons rats, Invest. Ophthalmol. Vis. Sci., 2007, vol. 48, no. 7, pp. 3381–3387.

    Article  PubMed  Google Scholar 

  176. Salero, E., Blenkinsop, T.A., Corneo, B., et al., Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives, Cell Stem Cell, 2012, vol. 10, no. 1, pp. 88–95.

    Article  CAS  PubMed  Google Scholar 

  177. Salmaninejad, A., Pourali, G., Shahini, A., et al., MicroRNA and exosome in retinal-related diseases: their roles in the pathogenesis and diagnosis, Comb. Chem. High Throughput Screen., 2022, vol. 25, no. 2, pp. 211–228.

    Article  CAS  PubMed  Google Scholar 

  178. Samuel, W., Jaworski, C., Postnikova, O.A., et al., Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells, Mol. Vis., 2017, vol. 23, pp. 60–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Sanford, L.P., Ormsby, I., Gittenberger-de Groot, A.C., et al., TGFβ2 knockout mice have multiple developmental defects that are non-overlapping with other TGFβ knockout phenotypes, Development, 1997, vol. 124, no. 13, pp. 2659–2670.

    Article  CAS  PubMed  Google Scholar 

  180. Saxton, R.A. and Sabatini, D.M., mTOR signaling in growth, metabolism, and disease, Cell, 2017, vol. 168, no. 6, pp. 960–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Schaller, M.D., Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions, J. Cell Sci., 2010, vol. 123, no. 7, pp. 1007–1013.

    Article  CAS  PubMed  Google Scholar 

  182. Schouwey, K. and Beermann, F., The Notch pathway: hair graying and pigment cell homeostasis, Histol. Histopathol., 2008, vol. 23, no. 5, pp. 609–619.

    CAS  PubMed  Google Scholar 

  183. Schouwey, K., Aydin, I.T., Radtke, F., and Beermann, F., RBP-Jκ-dependent Notch signaling enhances retinal pigment epithelial cell proliferation in transgenic mice, Oncogene, 2011, vol. 30, no. 3, pp. 313–322.

    Article  CAS  PubMed  Google Scholar 

  184. Schwartz, S.D., Hubschman, J.P., Heilwell, G., et al., Embryonic stem cell trials for macular degeneration: a preliminary report, Lancet, 2012, vol. 379, no. 9817, pp. 713–720.

    Article  CAS  PubMed  Google Scholar 

  185. Schwegler, J.S., Knorz, M.C., Akkoyun, I., and Liesenhoff, H., Basic, not acidic fibroblast growth factor stimulates proliferation of cultured human retinal pigment epithelial cells, Mol. Vis., 1997, vol. 3, pp. 1–10.

    Google Scholar 

  186. Schweigerer, L., Basic fibroblast growth factor as a wound healing hormone, Trends Pharmacol. Sci., 1988, vol. 9, no. 12, pp. 427–428.

    Article  CAS  PubMed  Google Scholar 

  187. Senabouth, A., Daniszewski, M., Lidgerwood, G.E., et al., Transcriptomic and proteomic retinal pigment epithelium signatures of age-related macular degeneration, Nat. Commun., 2022, vol. 13, no. 1, p. 4233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Shahriari, F., Satarian, L., Moradi, S., et al., MicroRNA profiling reveals important functions of miR-125b and let-7a during human retinal pigment epithelial cell differentiation, Exp. Eye Res., 2020, vol. 190, p. 107883.

    Article  CAS  PubMed  Google Scholar 

  189. Sheridan, C., Hiscott, P., and Grierson, I., Retinal pigment epithelium differentiation and dedifferentiation, in Essentials in Ophthalmology: Vitreo-Retinal Surgery, Kirchhof, B. and Wong, D., Eds., Springer, 2005, pp. 101–119.

    Google Scholar 

  190. Shu, D.Y., Butcher, E., and Saint-Geniez, M., EMT and ENDMT: emerging roles in age-related macular degeneration, Int. J. Mol. Sci., 2020, vol. 21, no. 12, pp. 1–26.

    Article  Google Scholar 

  191. Siebel, C. and Lendahl, U., Notch signaling in development, tissue homeostasis, and disease, Physiol. Rev., 2017, vol. 97, no. 4, pp. 1235–1294.

    Article  CAS  PubMed  Google Scholar 

  192. Staal, F.J.T., Wnt signalling meets epigenetics, Stem Cell Invest., 2016, vol. 2016, no. AUG, p. 38.

    Article  Google Scholar 

  193. Steindl-Kuscher, K., Krugluger, W., Boulton, M.E., et al., Activation of the β-catenin signaling pathway and its impact on RPE cell cycle, Invest. Ophthalmol. Vis. Sci., 2009, vol. 50, no. 9, pp. 4471–4476.

    Article  PubMed  Google Scholar 

  194. Stepp, M.A. and Menko, A.S., Immune responses to injury and their links to eye disease, Transl. Res., 2021, vol. 236, pp. 52–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Sternfeld, M.D., Robertson, J.E., Shipley, G.D., et al., Cultured human retinal pigment epithelial cells express basic fibroblast growth factor and its receptor, Curr. Eye Res., 1989, vol. 8, no. 10, pp. 1029–1037.

    Article  CAS  PubMed  Google Scholar 

  196. Strauss, O., The retinal pigment epithelium in visual function, Physiol. Rev., 2005, vol. 85, no. 3, pp. 845–881.

    Article  CAS  PubMed  Google Scholar 

  197. Suyama, K., Shapiro, I., Guttman, M., and Hazan, R.B., A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor, Cancer Cell, 2002, vol. 2, no. 4, pp. 301–314.

    Article  CAS  PubMed  Google Scholar 

  198. Takahashi, E., Nagano, O., Ishimoto, T., et al., Tumor necrosis factor-alpha regulates transforming growth factor-beta-dependent epithelial–mesenchymal transition by promoting hyaluronan–CD44–moesin interaction, J. Biol. Chem., 2010, vol. 285, no. 6, pp. 4060–4073.

    Article  CAS  PubMed  Google Scholar 

  199. Thiery, J.P., Acloque, H., Huang, R.Y.J., and Nieto, M.A., Epithelial–mesenchymal transitions in development and disease, Cell, 2009, vol. 139, no. 5, pp. 871–890.

    Article  CAS  PubMed  Google Scholar 

  200. Tien, Y.T., Chang, M.H., Chu, P.Y., et al., Downregulation of the KLF4 transcription factor inhibits the proliferation and migration of canine mammary tumor cells, Vet. J., 2015, vol. 205, no. 2, pp. 244–253.

    Article  CAS  PubMed  Google Scholar 

  201. Tosi, G.M., Neri, G., Caldi, E., et al., TGF-β concentrations and activity are down-regulated in the aqueous humor of patients with neovascular age-related macular degeneration, Sci. Rep., 2018a, vol. 8, no. 1.

  202. Tosi, G.M., Orlandini, M., and Galvagni, F., The controversial role of TGF-β in neovascular age-related macular degeneration pathogenesis, Int. J. Mol. Sci., 2018b, vol. 19, no. 11, p. 3363.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Tuo, J., Wang, Y., Cheng, R., et al., Wnt signaling in age-related macular degeneration: human macular tissue and mouse model, J. Transl. Med., 2015, vol. 13, no. 1, p. 330.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Usui-Ouchi, A., Ouchi, Y., Kiyokawa, M., et al., Upregulation of miR-21 levels in the vitreous humor is associated with development of proliferative vitreoretinal disease, PLoS One, 2016, vol. 11, no. 6.

  205. Valtorta, F., Benfenati, F., and Greengard, P., Structure and function of the synapsins, J. Biol. Chem., 1992, vol. 267, no. 11, pp. 7195–7198.

    Article  CAS  PubMed  Google Scholar 

  206. Vinores, S.A., Herman, M.M., Hackett, S.F., and Campochiaro, P.A., A morphological and immunohistochemical study of human retinal pigment epithelial cells, retinal glia, and fibroblasts grown on Gelfoam matrix in an organ culture system. a comparison of structural and nonstructural proteins and their application to cell, Graefes Arch. Clin. Exp. Ophthalmol., 1993, vol. 231, no. 5, pp. 279–288.

    Article  CAS  PubMed  Google Scholar 

  207. Vinores, S.A., Derevjanik, N.L., Mahlow, J., et al., Class III beta-tubulin in human retinal pigment epithelial cells in culture and in epiretinal membranes, Exp. Eye Res., 1995, vol. 60, no. 4, pp. 385–400.

    Article  CAS  PubMed  Google Scholar 

  208. Walsh, N., Valter, K., and Stone, J., Cellular and subcellular patterns of expression of bFGF and CNTF in the normal and light stressed adult rat retina, Exp. Eye Res., 2001, vol. 72, no. 5, pp. 495–501.

    Article  CAS  PubMed  Google Scholar 

  209. Wang, F.E., Zhang, C., Maminishkis, A., et al., MicroRNA-204/211 alters epithelial physiology, FASEB J., 2010, vol. 24, no. 5, pp. 1552–1571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Wang, C., Cao, G.F., Jiang, Q., and Yao, J., TNF-α promotes human retinal pigment epithelial (RPE) cell migration by inducing matrix metallopeptidase 9 (MMP-9) expression through activation of Akt/mTORC1 signaling, Biochem. Biophys. Res. Commun., 2012, vol. 425, no. 1, pp. 33–38.

    Article  CAS  PubMed  Google Scholar 

  211. Warzecha, C.C., Sato, T.K., Nabet, B., et al., ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing, Mol. Cell, 2009, vol. 33, no. 5, pp. 591–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Wiedemann, P., Growth factors in retinal diseases: proliferative vitreoretinopathy, proliferative diabetic retinopathy, and retinal degeneration, Surv. Ophthalmol., 1992, vol. 36, no. 5, pp. 373–384.

    Article  CAS  PubMed  Google Scholar 

  213. Wordinger, R.J. and Clark, A.F., Bone morphogenetic proteins and their receptors in the eye, Exp. Biol. Med. (Maywood), 2007, vol. 232, no. 8, pp. 979–992.

    Article  CAS  PubMed  Google Scholar 

  214. Xie, Y., Su, N., Yang, J., et al., FGF/FGFR signaling in health and disease, Signal Transduct. Target. Ther., 2020, vol. 5, no. 1.

  215. Xu, Q., Wang, Y., Dabdoub, A., et al., Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand–receptor pair, Cell, 2004, vol. 116, no. 6, pp. 883–895.

    Article  CAS  PubMed  Google Scholar 

  216. Xu, W. and Kimelman, D., Mechanistic insights from structural studies of beta-catenin and its binding partners, J. Cell Sci., 2007, vol. 120, no. 19, pp. 3337–3344.

    Article  CAS  PubMed  Google Scholar 

  217. Xu, J., Lamouille, S., and Derynck, R., TGF-β-induced epithelial to mesenchymal transition, Cell Res., 2009, vol. 19, no. 2, pp. 156–172.

    Article  CAS  PubMed  Google Scholar 

  218. Xu, J., Zhu, D., He, S., et al., Transcriptional regulation of bone morphogenetic protein 4 by tumor necrosis factor and its relationship with age-related macular degeneration, FASEB J., 2011, vol. 25, no. 7, pp. 2221–2233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Yafai, Y., Iandiev, I., Lange, J., et al., Basic fibroblast growth factor contributes to a shift in the angioregulatory activity of retinal glial (Müller) cells, PLoS One, 2013, vol. 8, no. 7, р. e68773.

  220. Yang, J., Shi, P., Tu, M., et al., Bone morphogenetic proteins: relationship between molecular structure and their osteogenic activity, Food Sci. Hum. Wellness, 2014, vol. 3, nos. 3–4, pp. 127–135.

    Article  Google Scholar 

  221. Yang, L., Liu, Z., Gong, H., et al., Efficient delivery of NF‑kB siRNA to human retinal pigment epithelial cells with hyperbranched cationic polysaccharide derivative-based nanoparticles, Int. J. Nanomed., 2015a, vol. 10, no. 1, p. 2735.

    Article  Google Scholar 

  222. Yang, S., Li, H., Li, M., and Wang, F., Mechanisms of epithelial–mesenchymal transition in proliferative vitreoretinopathy, Discov. Med., 2015b, vol. 20, no. 110, pp. 207–217.

    PubMed  Google Scholar 

  223. Yao, H., Li, H., Yang, S., et al., Inhibitory effect of bone morphogenetic protein 4 in retinal pigment epithelial-mesenchymal transition, Sci. Rep., 2016, vol. 6, p. 32182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Yao, H., Ge, T., Zhang, Y., et al., BMP7 antagonizes proliferative vitreoretinopathy through retinal pigment epithelial fibrosis in vivo and in vitro, FASEB J., 2019, vol. 33, no. 3, pp. 3212–3224.

    Article  CAS  PubMed  Google Scholar 

  225. Yasumuro, H., Sakurai, K., Toyama, F., et al., Implications of a multi-step trigger of retinal regeneration in the adult newt, Biomedicines, 2017, vol. 5, no. 2, p. 25.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Yue, J. and Lopez, J.M., Understanding MAPK signaling pathways in apoptosis, Int. J. Mol. Sci., 2020, vol. 21, no. 7, p. 2346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Zhang, C., Su, L., Huang, L., and Song, Z.Y., GSK3β inhibits epithelial-mesenchymal transition via the Wnt/β-catenin and PI3K/AKT pathways, Int. J. Ophthalmol., 2018, vol. 11, no. 7, pp. 1120–1128.

    PubMed  PubMed Central  Google Scholar 

  228. Zhao, C., Yasumura, D., Li, X., et al., mTOR-mediated dedifferentiation of the retinal pigment epithelium initiates photoreceptor degeneration in mice, J. Clin. Invest., 2011, vol. 121, no. 1, pp. 369–383.

    Article  CAS  PubMed  Google Scholar 

  229. Zhao, C., Wang, Q., and Temple, S., Stem cell therapies for retinal diseases: recapitulating development to replace degenerated cells, Development, 2017, vol. 144, no. 8, pp. 1368–1381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Zheng, G., Lyons, J.G., Tan, T.K., et al., Disruption of E-cadherin by matrix metalloproteinase directly mediates epithelial–mesenchymal transition downstream of transforming growth factor-β1 in renal tubular epithelial cells, Am. J. Pathol., 2009, vol. 175, no. 2, pp. 580–591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Zhou, M., Geathers, J.S., Grillo, S.L., et al., Role of epithelial–mesenchymal transition in retinal pigment epithelium dysfunction, Front. Cell Dev. Biol., 2020, vol. 8.

  232. Zhu, D., Deng, X., Xu, J., and Hinton, D.R., What determines the switch between atrophic and neovascular forms of age related macular degeneration? The role of BMP4 induced senescence, Aging (Albany, NY), 2009a, vol. 1, no. 8, pp. 740–745.

    Article  CAS  PubMed  Google Scholar 

  233. Zhu, D., Wu, J., Spee, C., et al., BMP4 mediates oxidative stress-induced retinal pigment epithelial cell senescence and is overexpressed in age-related macular degeneration, J. Biol. Chem., 2009b, vol. 284, no. 14, pp. 9529–9539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Zhu, J., Nguyen, D., Ouyang, H., et al., Inhibition of RhoA/Rho-kinase pathway suppresses the expression of extracellular matrix induced by CTGF or TGF-β in ARPE-19, Int. J. Ophthalmol., 2013, vol. 6, no. 1, pp. 8–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Zhu, J., Luz-Madrigal, A., Haynes, T., et al., β-Catenin inactivation is a pre-requisite for chick retina regeneration, PLoS One, 2014, vol. 9, no. 7, р. e101748.

  236. Zou, H., Shan, C., Ma, L., et al., Polarity and epithelial-mesenchymal transition of retinal pigment epithelial cells in proliferative vitreoretinopathy, PeerJ, 2020, vol. 8, р. e10136.

Download references

ACKNOWLEDGMENTS

I am grateful to A.M. Kurinov for conducting the RT‑PCR.

Funding

The work was performed within the framework of the Russian Federation State Assignment of the IDB RAS no. 0088-2021-0017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kuznetsova.

Ethics declarations

The authors declare that she has no conflicts of interest.

This paper does not contain information on any studies involving humans or animals performed by the author.

Additional information

Translated by E. Tolkunova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, A.V. Epithelial-Mesenchymal Transition: Molecular Mechanisms of Retinal Pigment Epithelial Cell Activation. Russ J Dev Biol 53, 421–450 (2022). https://doi.org/10.1134/S1062360422060054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062360422060054

Keywords:

Navigation