Skip to main content
Log in

Multivariate Optimization of Operational Parameters in Microfluidic Paper-Based Analytical Devices for the Determination of Organophosphate and Carbamate Pesticides

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The aim of this study is to employ a response surface methodology (RSM) to optimize experimental parameters in microfluidic paper-based analytical devices (µ-PADs). The independent parameters include concentrations and volumes of acetylcholinesterase, acetylthiocholine iodide, and 5,5-dithiobis-(2-nitrobenzoic acid). Their effect on mean color intensity was tested and optimized. From the analysis of variance, high regression and fitting values were obtained between the experimental and RSM predicted mean color intensity. Under optimum conditions, satisfactory linearity (R2 > 0.9990) in the range of 0.25–16 mg/L was obtained for the studied pesticides. The limit of detection (LOD) varies from 0.13 to 0.27 mg/L; high precision (RSD of 3.8–8.0%), reproducibility (RSD of 7.2–11.0%), and recovery (78–97%) were achieved. The RSM approach has been demonstrated to be more efficient than the traditional approach. It resulted in a µ-PAD system with less amount of reagent usage and better LOD compared with a univariate approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Ye, M., Beach, J., Martin, J.W., and Senthilselvan, A., Int. J. Environ. Res. Public Health, 2013, vol. 10, p. 6442.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arcury, T.A., Laurienti, P.J., Chen, H., Howard, T.D., Barr, D.B., Mora, D.C., Summers, P., and Quandt, S.A., J. Occup. Environ. Med., 2016, vol. 58, p. 1079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Llop, S., Murcia, M., Iniguez, C., Roca, M., González, L., Yusà, V., Rebagliato, M., and Ballester, F., Environ. Health, 2017, vol. 16, 46.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ellman, G.L., Courtney, K.D., Andres Jr, V., and Featherstone, R.M., Biochem. Pharmacol., 1961, vol. 7, p. 88.

    Article  CAS  PubMed  Google Scholar 

  5. Badawy, M.E. and El-Aswad, A.F., Int. J. Anal. Chem., 2014, vol. 2014, 536823.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sankar, K., Lenisha, D., Janaki, G., Juliana, J., Kumar, R.S., Selvi, M.C., and Srinivasan, G., Talanta, 2020, vol. 208, 120408. https://doi.org/10.1016/j.talanta.2019.120408

    Article  CAS  PubMed  Google Scholar 

  7. Kim, H.J., Kim, Y., Park, S.J., Kwon, C., and Noh, H., BioChip J., 2018, vol. 12, p. 326.

    Article  CAS  Google Scholar 

  8. Kavruk, M., Özalp, V.C., and Öktem, H.A., J. Anal. Methods Chem., 2013, vol. 2013, 932946. https://doi.org/10.1155/2013/932946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Apilux, A., Isarankura-Na-Ayudhya, C., Tantimongcolwat, T., and Prachayasittikul, V., EXCLI J., 2015, vol. 14, p. 307.

    PubMed  PubMed Central  Google Scholar 

  10. Chen, H., Chen, R., and Li, S., J. Chromatogr. A, 2010, vol. 1217, p. 1244.

    Article  CAS  PubMed  Google Scholar 

  11. Carrilho, E., Martinez, A.W., and Whitesides, G.M., Anal. Chem., 2009, vol. 81, p. 7091.

    Article  CAS  PubMed  Google Scholar 

  12. Ferreira, S.C., Bruns, R., Ferreira, H., Matos, G., David, J., and Brandão, G., da Silva, E.P., Portugal, L., dos Reis, P., and Souza, A., Anal. Chim. Acta, 2007, vol. 597, p. 179.

    Article  CAS  PubMed  Google Scholar 

  13. Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S., and Escaleira, L.A., Talanta, 2008, vol. 76, p. 965.

    Article  CAS  PubMed  Google Scholar 

  14. Lundstedt, T., Seifert, E., Abramo, L., Thelin, B., Nystrom, A., Pettersen, J., and Bergman, R., Chemom. Intell. Lab. Syst., 1998, vol. 42, p. 3.

    Article  CAS  Google Scholar 

  15. Box, G.E. and Draper, N.R., Empirical Model-Building and Response Surfaces, New York: Wiley, 1987.

    Google Scholar 

  16. Dehghani, M.H., Faraji, M., Mohammadi, A., Kamani, H., and Korean, J., Chem. Eng., 2017, vol. 34, p. 454.

    CAS  Google Scholar 

  17. Bagheri, A.R., Ghaedi, M., Asfaram, A., Jannesar, R., and Goudarzi, A., Ultrason. Sonochem., 2017, vol. 35, p. 112.

    Article  CAS  PubMed  Google Scholar 

  18. Arunachalam, R. and Annadurai, G., J. Environ. Sci. Technol., 2011, vol. 4, p. 65.

    Article  CAS  Google Scholar 

  19. Snejdarkova, M., Svobodova, L., Nikolelis, D.P., Wang, J., and Hianik, T., Electrolysis, 2003, vol. 15, p. 1185.

    CAS  Google Scholar 

  20. Luo, Q., Yu, F., Yang, F., Yang, C., Qiu, P., and Wang, X., Talanta, 2018, vol. 183, p. 297.

    Article  CAS  PubMed  Google Scholar 

  21. Shrivastava, A. and Gupta, V., Chron. Young Sci., 2011, vol. 2, p. 21.

    Article  Google Scholar 

  22. Sante, D., Bruss. Belg., 2017, vol. 46, p. 31.

    Google Scholar 

  23. Jin, L., Hao, Z., Zheng, Q., Chen, H., Zhu, L., Wang, C., Liu, X., and Lu, C., Anal. Chim. Acta, 2020, vol. 1100, p. 215.

    Article  CAS  PubMed  Google Scholar 

  24. Aidil, M.S., Sabullah, M.K., Halmi, M.I., Sulaiman, R., Shukor, M.S., Shukor, M.Y., Shaharuddin, N.A., Syed, M.A., and Syahir, A., Fresenius’ Environ. Bull., 2013, vol. 22, p. 3572.

    CAS  Google Scholar 

  25. Arduini, F., Ricci, F., Bourais, I., Amine, A., Moscone, D., and Palleschi, G., Anal. Lett., 2005, vol. 38, p. 1703.

    Article  CAS  Google Scholar 

  26. Sabullah, M.K., Sulaiman, M.R., Shukor, M.S., Yusof, M.T., Johari, W.L.W., Shukor, M.Y., and Syahir, A., Rend. Lincei, 2015, vol. 26, p. 151.

    Article  Google Scholar 

  27. Friedman, M., Chemistry and Biochemistry of the Sulfhydryl Group in Amino Acids, Peptides and Proteins, Oxford, New York: Pergamon, 1973.

    Google Scholar 

  28. Krȩżel, A., Leśniak, W., Jeżowska-Bojczuk, M., Młynarz, P., Brasuñ, J., and Kozłowski, J. Inorg. Biochem., 2001, vol. 84, p. 77.

    Article  Google Scholar 

  29. Majid, S., El-Rhazi, M., Amine, A., and Brett, C.M., Anal. Chim. Acta, 2002, vol. 2, p. 123.

    Article  Google Scholar 

  30. Tran-Minh, C., Pandey, P., and Kumaran, S., Biosens. Bioelectron., 1990, vol. 5, p. 461.

    Article  CAS  PubMed  Google Scholar 

  31. Soldatkin, A., Gorchkov, D., Martelet, C., and Jaffrezic-Renault, N., Sens. Actuators, B, 1997, vol. 43, p. 99.

    Article  CAS  Google Scholar 

  32. Beshana, S., Hussen, A., Leta, S., and Kaneta, T., Bull. Environ. Contam. Toxicol., 2022, vol. 109, p. 344.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors would like to acknowledge Addis Ababa University for financial support through thematic research project, entitled “Developing Innovative Microfluidic Paper-Based Analytical Devices (μ-PADs): Viable solution for Environmental Monitoring in Ethiopia” (Project No.VPRTT/PY-021/2018/10). Sheleme also acknowledges North Shewa Zone Administration (Oromia) for granting him PhD study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hussen.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beshana, S., Hussen, A., Leta, S. et al. Multivariate Optimization of Operational Parameters in Microfluidic Paper-Based Analytical Devices for the Determination of Organophosphate and Carbamate Pesticides. J Anal Chem 78, 25–34 (2023). https://doi.org/10.1134/S1061934823010033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934823010033

Keywords:

Navigation