Skip to main content
Log in

Microfluidic Paper Based Analytical Devices for the Detection of Carbamate Pesticides

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Microfluidic paper-based analytical devices (μ-PADs) are a new technology platform for the development of extremely low-cost sensing applications. In this study, μ-PADs has been developed for quantitative determination of carbamate pesticides. Key experimental parameters including concentration and volume of acetylcholinesterase, acetylthiocholine iodide and 5,5′-dithiobis-(2-nitrobenzoic acid), incubation time and image capturing time were systematically optimized. Under optimal conditions, the method showed wide range of linearity (0.25–16 mg/L), repeatability (4%–5% RSD) and intermediate precision (7%–10% RSD). Limit of detection was observed to be 0.4, 0.24 and 0.46 mg/L for carbaryl, carbosulfan and furathiocarb, respectively. An acceptable mean recovery (87% to 94%) was observed for the three pesticides at 1 mg/L fortification level. The results reveal that the developed method requires minimal reagents, simple and is easy to handle. It can be used for the quantification of carbamate pesticides in resource limited laboratories without the need for the conventional analytical instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aidil MS, Sabullah MK, Halmi MI, Sulaiman R, Shukor MS, Shukor MY, Shaharuddin NA, Syed MA, Syahir A (2013) Assay for heavy metals using an inhibitive assay based on the acetylcholinesterase from Pangasius hypophthalmus (Sauvage, 1878). Fresenius Environ Bull 22(12):3572–3576

    CAS  Google Scholar 

  • Apilux A, Isarankura-Na-Ayudhya C, Tantimongcolwat T, Prachayasittikul V (2015) Based acetylcholinesterase inhibition assay combining a wet system for organophosphate and carbamate pesticides detection. EXCLI J 14:307–319

    Google Scholar 

  • Arduini F, Ricci F, Bourais I, Amine A, Moscone D, Palleschi G (2005) Extraction and detection of pesticides by cholinesterase inhibition in a two-phase system: a strategy to avoid heavy metal interference. Anal Lett 38(11):1703–1719. https://doi.org/10.1080/00032710500206970

    Article  CAS  Google Scholar 

  • Badawy MEI, El-Aswad AF (2014) Bioactive paper sensor based on the acetylcholinesterase for the rapid detection of organophosphate and carbamate pesticides. Int. J Anal Chem 2014:1–8

    Google Scholar 

  • Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a imple micropatterning process for paper-based microfluidics. Anal Chem 81(16):7091–7095. https://doi.org/10.1021/ac901071p

    Article  CAS  Google Scholar 

  • Chen H, Chen R, Li S (2010) Low-density extraction solvent-based solvent terminated dispersive liquid–liquid microextraction combined with gas chromatography-tandem mass spectrometry for the determination of carbamate pesticides in water samples. Food Addit Contam A 26(3):340–347. https://doi.org/10.1080/02652030802524516

    Article  CAS  Google Scholar 

  • Dăneţ AF, Bucur B, Cheregi M-C, Badea M, Şerban S (2003) Spectrophotometric determination of organophosphoric insecticides in a FIA system based on AChE inhibition. Anal Lett 36(1):59–73. https://doi.org/10.1081/AL-120017263

    Article  CAS  Google Scholar 

  • Du D, Huang X, Cai J, Zhang A (2007) Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube–chitosan matrix. Sens Actuators B 127(2):531–535. https://doi.org/10.1016/j.snb.2007.05.006

    Article  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95. https://doi.org/10.1016/0006-2952(61)90145-9

    Article  CAS  Google Scholar 

  • Fernández-Ramos MD, Ogunneye A, Babarinde N, Erenas M, Capitán-Vallvey LF (2020) Bioactive microfluidic paper device for pesticide determination in waters. Talanta. https://doi.org/10.1016/j.talanta.2020.121108

    Article  Google Scholar 

  • Gambacorta G, Faccia M, Lamacchia C, Di Luccia A, La Notte E (2005) Pesticide residues in tomato grown in open field. Food Control 16(7):629–632. https://doi.org/10.1016/j.foodcont.2004.07.002

    Article  CAS  Google Scholar 

  • Hossain SZ, Luckham RE, Smith AM, Lebert JM, Davies LM, Pelton RH, Filipe CD, Brennan JD (2009) Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Anal Chem 81(21):9055–9064. https://doi.org/10.1021/ac901714h

    Article  CAS  Google Scholar 

  • Izquierdo A, Tena M, de Castro ML, Valcarcel M (1996) Supercritical fluid extraction of carbamate pesticides from soils and cereals. Chromatographia 42(3–4):206–212

    Article  CAS  Google Scholar 

  • Jaffrezic-Renault N (2001) New trends in biosensors for organophosphorus pesticides. Sensors 1(2):60–74

    Article  Google Scholar 

  • Jimidar M, Niemeijer N, Peeters R, Hoogmartens J (1998) Robustness testing of a liquid chromatography method for the determination of vorozole and its related compounds in oral tablets. J Pharm Biomed Anal 18(4–5):479–485. https://doi.org/10.1016/S0731-7085(98)00203-9

    Article  CAS  Google Scholar 

  • Jin L, Hao Z, Zheng Q, Chen H, Zhu L, Wang C, Liu X, Lu C (2020) A facile microfluidic paper-based analytical device for acetylcholinesterase inhibition assay utilizing organic solvent extraction in rapid detection of pesticide residues in food. Anal Chim Acta 1100:215–224. https://doi.org/10.1016/j.aca.2019.11.067

    Article  CAS  Google Scholar 

  • Kavruk M, Özalp VC, Öktem HA (2013) Portable bioactive paper-based sensor for quantification of pesticides. J Anal Methods Chem 2013:1–8

    Article  Google Scholar 

  • Kim HJ, Kim Y, Park SJ, Kwon C, Noh H (2018) Development of colorimetric paper sensor for pesticide detection using competitive-inhibiting reaction. BioChip J 12:326–331

    Article  CAS  Google Scholar 

  • Kok FN, Bozoglu F, Hasirci V (2002) Construction of an acetylcholinesterase–choline oxidase biosensor for aldicarb determination. Biosens Bioelectron 17:531–539

    Article  CAS  Google Scholar 

  • Lee M-G, Patil V, Na Y-C, Lee DS, Lim SH, Yi G-R (2018) Highly stable, rapid colorimetric detection of carbaryl pesticides by azo coupling reaction with chemical pre-treatment. Sens Actuators B 261:489–496. https://doi.org/10.1016/j.snb.2018.01.151

    Article  CAS  Google Scholar 

  • March C, Manclús J, Jiménez Y, Arnau A, Montoya A (2009) A piezoelectric immunosensor for the determination of pesticide residues and metabolites in fruit juices. Talanta 78:827–833. https://doi.org/10.1016/j.talanta.2008.12.058

    Article  CAS  Google Scholar 

  • Menezes ML, Felix G, Demarchi A (1998) On-line extraction and determination of carbofuran in raw milk by direct HPLC injection on an ISRP column. Chromatographia 47(1–2):81–83

    Article  CAS  Google Scholar 

  • Nouanthavong S, Nacapricha D, Henry CS, Sameenoi Y (2016) Pesticide analysis using nanoceria-coated paper-based devices as a detection platform. Analyst 141(5):1837–1846. https://doi.org/10.1039/C5AN02403J

    Article  CAS  Google Scholar 

  • Oliveira TM, Barroso MF, Morais S, de Lima-Neto P, Correia AN, Oliveira MB, Delerue-Matos C (2013) Biosensor based on multi-walled carbon nanotubes paste electrode modified with laccase for pirimicarb pesticide quantification. Talanta 106:137–143. https://doi.org/10.1016/j.talanta.2012.12.017

    Article  CAS  Google Scholar 

  • Pundir C, Malik A (2019) Bio-sensing of organophosphorus pesticides: a review. Biosens Bioelectron 140:111348. https://doi.org/10.1016/j.bios.2019.111348

    Article  CAS  Google Scholar 

  • Reybier K, Zairi S, Jaffrezic-Renault N, Fahys B (2002) The use of polyethyleneimine for fabrication of potentiometric cholinesterase biosensors. Talanta 56(6):1015–1020

    Article  CAS  Google Scholar 

  • Sabullah MK, Sulaiman MR, Shukor MS, Yusof MT, Johari WLW, Shukor MY, Syahir A (2015) Heavy metals biomonitoring via inhibitive assay of acetylcholinesterase from Periophthalmodon schlosseri. Rendiconti Lincei 26(2):151–158. https://doi.org/10.1007/s12210-014-0359-0

    Article  Google Scholar 

  • Sankar K, Lenisha D, Janaki G, Juliana J, Kumar RS, Selvi MC, Srinivasan G (2020) Digital image-based quantification of chlorpyrifos in water samples using a lipase embedded paper based device. Talanta 208:120408. https://doi.org/10.1016/j.talanta.2019.120408

    Article  CAS  Google Scholar 

  • Sante D (2017) Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed SANTE/11813/2017. Bruss Belg 46:31–42

    Google Scholar 

  • Shelton JF, Geraghty EM, Tancredi DJ, Delwiche LD, Schmidt RJ, Ritz B, Hansen RL, Hertz-Picciotto I (2014) Neurodevelopmental disorders and prenatal residential proximity to agricultural pesticides: the CHARGE study. Environ Health Perspect 122(10):1103–1109. https://doi.org/10.1289/ehp.1307044

    Article  Google Scholar 

  • Shrivastava A, Gupta VB (2011) Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron Young Sci 2(1):21–25

    Article  Google Scholar 

  • Snejdarkova M, Svobodova L, Nikolelis DP, Wang J, Hianik T (2003) Acetylcholine biosensor based on dendrimer layers for pesticides detection. Electroanalysis 15(14):1185–1191. https://doi.org/10.4103/2229-5186.79345

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Addis Ababa University, Thematic Research Fund for supporting the project entitled “Developing Innovative Microfluidic Paper-Based Analytical Devices (μPADs): Viable solution for Environmental Monitoring in Ethiopia”. Sheleme also acknowledges North Shewa Zone Administration (Oromia) for sponsoring his PhD study.

Funding

This study was supported by Addis Ababa University (Grant No. VPRTT/PY-041/2018 to AH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Hussen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 94 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beshana, S., Hussen, A., Leta, S. et al. Microfluidic Paper Based Analytical Devices for the Detection of Carbamate Pesticides. Bull Environ Contam Toxicol 109, 344–351 (2022). https://doi.org/10.1007/s00128-022-03533-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-022-03533-3

Keywords

Navigation