Skip to main content
Log in

Quantum-Mechanical Modeling of the Interaction between Carbon Nanostructures and Metal Ions

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Quantum-mechanical models for the formation of metal–carbon complexes of Co, Ni, Cu, and Zn ions with С60 fullerene molecules and single-wall С48 carbon nanotubes (SWCNTs) are proposed. The results of calculations show that, in aqueous solutions of electrolytes, Co, Ni, Cu, and Zn ions can be adsorbed into the С60 fullerene and С48 SWCNT surfaces with the formation of stable carbon-nanomaterial—metal (CNM—M) complexes; in this case, the minimum energy of the С60–М complex for Co and Cu ions corresponds to the position above the С6 cell center; for a Ni ion, above the single С–С bond in the С6 cell; and for a Zn ion, above the C atom. The optimized states of the С48–М complexes correspond to the position of metal ions above the С6 cell center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. C. Gheorghies, D. E. Rusu, A. Bund, S. Condurache-Bota, and L. P. Georgescu, Appl Nanosci. 4, 1021 (2014). https://doi.org/10.1007/s13204-013-0285-y

    Article  CAS  Google Scholar 

  2. G. K. Burkat, T. Fujimura, V. Yu. Dolmatov, E. A. Orlova, and M. V. Veretennikova, Diamond Relat. Mater. 14, 1761 (2005). https://doi.org/10.1016/j.diamond.2005.08.004

    Article  CAS  Google Scholar 

  3. V. P. Isakov, A. I. Lyamkin, D. N. Nikitin, A. S. Shalimova, and A. V. Solntsev, Prot. Met. Phys. Chem. Surf. 46, 578 (2010). https://doi.org/10.1134/S2070205110050138

    Article  CAS  Google Scholar 

  4. Liping Wang, Yan Gao, Qunji Xue, Huiwen Liu, and Tao Xu, Mater. Sci. Eng., A 390, 313 (2005). https://doi.org/10.1016/j.msea.2004.08.033

    Article  CAS  Google Scholar 

  5. Zabludovs’kii V. O., Dudkina V. V., Shtapenko E. P., Nauka Progr. Transp. Vestn. Dnepropetr. Nats. Univ. im.V. Lazaryana 47 (5), 70 (2013). https://doi.org/10.15802/stp2013/17968

    Article  Google Scholar 

  6. V. V. Dudkina, V. A. Zabludovskii, and E. F. Shtapenko, Metallofiz. Noveishie Tekhnol. 37, 713 (2015). https://doi.org/10.15407/mfint.37.05.0713

    Article  CAS  Google Scholar 

  7. V. V. Titarenko and V. A. Zabludovskii, Metallofiz. Noveishie Tekhnol. 38, 519 (2016). Doi https://doi.org/10.15407/mfint.38.04.0519

    Article  Google Scholar 

  8. V. V. Tytarenko, V. A. Zabludovsky, E. Ph. Shtapenko, and I. V. Tytarenko, Galvanotechnik, No. 4, 648 (2019).

    Google Scholar 

  9. G. A. Chiganova and L. E. Mordvinova, Inorg. Mater. 47, 717 (2011). https://doi.org/10.1134/S0020168511070089

    Article  CAS  Google Scholar 

  10. Hiroshi Matsubara, Yoshihiro Abe, Yoshiyuki Chiba, Hiroshi Nishiyama, Nobuo Saito, Kazunori Hodouchi, and Yasunobu Inou, Acta Electrochim. 252, 3047 (2007). https://doi.org/10.1016/j.electacta.2006.09.043

    Article  CAS  Google Scholar 

  11. Sam Zhang, Deen Sun, Yongqing Fu, and Hejun Du, Surf. Coat. Technol. 167, 113 (2003). https://doi.org/10.1016/S0257-8972(02)00903-9

    Article  CAS  Google Scholar 

  12. J. G. Hou, Xiang Li, Haiqian Wang, and Bing Wang, J. Phys. Chem. Solids 61, 995 (2000). https://doi.org/10.1016/S0022-3697(99)00349-2

    Article  CAS  Google Scholar 

  13. H. Valencia, A. Gil, and G. Frapper, J. Phys. Chem. C 114, 14141 (2010).

    Article  CAS  Google Scholar 

  14. A. Larsson, D. Simon, J. C. Elliott, G. J. Repp, G. Meyer, and R. Allenspach, Phys. Rev. B: Condens. Matter Mater. Phys. 77, 115434 (2008). Rev B.77.115434https://doi.org/10.1103/Phys

  15. E. F. Shtapenko, V. A. Zabludovskii, and E. O. Voronkov, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 12, 95 (2010).

  16. W. Koch and M. C. Holthausen, Chemists Guide to Density Functional Theory (Wiley, New York, 2001).

    Book  Google Scholar 

  17. N. Lopez, N. Almora-Barrios, and G. Carchini, Catal. Sci. Technol. 2, 2405 (2012). https://doi.org/10.1039/C2CY20384G

    Article  CAS  Google Scholar 

  18. T. C. Allison and Y. Y. Tong, Phys. Chem. Chem. Phys. 13, 12858 (2011). https://doi.org/10.1039/C1CP20376B

    Article  CAS  Google Scholar 

  19. G. Schreckenbach, P. J. Hay, and R. L. Martin, Inorg. Chem. 37, 4442 (1998). https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<70::AID-JCC9>3.0.CO;2-F

    Article  CAS  Google Scholar 

  20. B. Miehlich, A. Savin, H. Stoll, and H. Preuss, Chem. Phys. Lett. 157, 200 (1989). https://doi.org/10.1016/0009-2614(89)87234-3

    Article  CAS  Google Scholar 

  21. D. A. Keire, Hee Jans Yun, Lin Li, et al., Inorg. Chem. 40, 4310 (2001). https://doi.org/10.1021/ic0010297

    Article  CAS  Google Scholar 

  22. J. Andzelm and J. Labanowski, Density Functional Methods in Chemistry (Springer, Heidelberg, 1991). https://doi.org/10.1007/978-1-4612-3136-3

    Book  Google Scholar 

  23. S. Grimme, A. J. Grimme, S. Ehrlich, and H. Krieg, J. Phys. Chem. 132, 154104 (2010). https://doi.org/10.1063/1.3382344

    Article  CAS  Google Scholar 

  24. S. Grimme, EhrlichS. Grimme, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011). https://doi.org/10.1002/jcc.21759

    Article  CAS  Google Scholar 

  25. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005). https://doi.org/10.1021/cr9904009

    Article  CAS  Google Scholar 

  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Caimni, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. Al’Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision C.02 (Gaussian, Wallingford, 2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Tytarenko or V. Kolodziejczyk.

Additional information

Translated by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tytarenko, V.V., Shtapenko, E.P., Voronkov, E.O. et al. Quantum-Mechanical Modeling of the Interaction between Carbon Nanostructures and Metal Ions. J. Surf. Investig. 15, 866–871 (2021). https://doi.org/10.1134/S102745102104039X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102104039X

Keywords:

Navigation