Skip to main content
Log in

Changes in the Shape of the CH Absorption Band in the IR Spectra of the Chemicaly Dehydrofluorinated Poly(Vinylidene Fluoride) Film During Aging

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract—The stability of the atomic structure and physical and chemical properties of new materials is of crucial importance for their practical use. Long-term (more than 5 × 105 min) and regular monitoring of the molecular structure of a poly(vinylidene fluoride) film sample after its chemical dehydrofluorination and rinsing with ethanol is performed by the infrared (IR) spectroscopy technique. Changes in the absorption spectra of stretching oscillations of CH and OH bonds in the wave-number range 2500–3700 cm–1 are analyzed. The results of the study indicate the initial attachment of ethoxy groups to carbonized fragments of carbon chains and their subsequent detachment, accompanied by sample oxidation. A feature with a center near 3090–3100 cm–1 is found to be in all spectra, the origin of which cannot be unambiguously identified at present. A previously unknown effect of a steady, but different-rate decrease in the contribution to the infrared absorption of stretching vibrations of four molecular complexes of ethoxy groups is revealed. The oscillation frequencies of three of them steadily increase also at different rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Carbyne and Carbynoid Structures, Ed. by R. B. Heimann (Kluwer, Dordrecht, 1999).

    Google Scholar 

  2. W. Luo and W. Windl, Carbon 47, 367 (2009). https://doi.org/10.1016/j.carbon.2008.10.017

    Article  CAS  Google Scholar 

  3. I. V. Shakhova and E. A. Belenkov, Phys. Solid State 53, 2385 (2011).

    Article  Google Scholar 

  4. A. Freitas, S. Azevedo, and J. R. Kaschny, Phys. E (Amsterdam, Neth.) 84, 444 (2016). https://doi.org/10.1016/j.physe.2016.07.018

    Article  CAS  Google Scholar 

  5. E. A. Buntov, A. F. Zatsepin, M. B. Guseva, and Yu. S. Ponosov, Carbon 117, 271 (2017). https://doi.org/10.1016/j.carbon.2017.03.010

    Article  CAS  Google Scholar 

  6. C.-S. Kang, K. Fujisawa, Y.-I. Ko, et al., Carbon 107, 217 (2016). https://doi.org/10.1016/j.carbon.2016.05.069

  7. N. F. Andrade, T. L. Vasconcelos, C. P. Gouvea, et al., Carbon 90, 172 (2015). https://doi.org/10.1016/j.carbon.2015.04.001

    Article  CAS  Google Scholar 

  8. D. A. Kovriguine and S. P. Nikitenkova, Phys. Solid State 58, 611 (2016).

    Article  CAS  Google Scholar 

  9. L. Ravagnan, F. Siviero, C. Lenardi, et al., Phys. Rev. Lett. 89, 285506 (2002). https://doi.org/10.1103/PhysRevLett.89.285506

    Article  CAS  Google Scholar 

  10. A. Le Moël, J. P. Duraud, and E. Balanzat, Nucl. Instrum. Methods Phys. Res., Sect. B 18, 59 (1986). https://doi.org/10.1016/S0168-583X(86)80012-X

  11. M. D. Duca, C. L. Plosceanu, and T. Pop, J. Appl. Polym. Sci. 67, 2125 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980328)67:13<2125::AID-APP2>3.0.CO;2-G

    Article  CAS  Google Scholar 

  12. L. A. Pesin, V. M. Morilova, D. A. Zherebtsov, and S. E. Evsyukov, Polym. Degrad. Stab. 98, 666 (2013). https://doi.org/10.1016/j.polymdegradstab.2012.11.007

    Article  CAS  Google Scholar 

  13. A. M. Kuvshinov, S. S. Chebotaryov, L. A. Pesin, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 4, 122 (2010).

    Article  Google Scholar 

  14. S. S. Chebotaryov, A. A. Volegov, L. A. Pesin, et al., Phys. E (Amsterdam, Neth.) 36, 184 (2007). https://doi.org/10.1016/j.physe.2006.10.011

    Article  CAS  Google Scholar 

  15. S. S. Chebotaryov, E. M. Baitinger, A. A. Volegov, et al., Radiat. Phys. Chem. 75, 2024 (2006). https://doi.org/10.1016/j.radphyschem.2005.12.051

    Article  CAS  Google Scholar 

  16. M. M. Brzhezinskaya, V. M. Morilova, E. M. Baitinger, et al., Polym. Degrad. Stab. 99, 176 (2014). https://doi.org/10.1016/j.polymdegradstab.2013.11.009

    Article  CAS  Google Scholar 

  17. G. J. Ross, J. F. Watts, M. P. Hill, and P. Morrissey, Polymer 41, 1685 (2000). https://doi.org/10.1016/S0032-3861(00)00328-1

    Article  CAS  Google Scholar 

  18. V. E. Zhivulin, N. A. Moskvina, I. V. Gribov, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 11, 927 (2017).

    Article  CAS  Google Scholar 

  19. V. E. Zhivulin, V. M. Chernov, A. A. Osipov, et al., Phys. Solid State 59, 1414 (2017).

    Article  CAS  Google Scholar 

  20. V. E. Zhivulin, L. A. Pesin, and D. V. Ivanov, Phys. Solid State 58, 86 (2016).

    Article  CAS  Google Scholar 

  21. L. A. Pesin, E. M. Baitinger, Yu. P. Kudryavtsev, and S. E. Evsyukov, Appl. Phys. A 66, 469 (1998). https://doi.org/10.1007/s003390050697

    Article  CAS  Google Scholar 

  22. L. A. Pesin, S. S. Chebotaryov, A. M. Kuvshinov, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 4 (2), 214 (2010). https://doi.org/10.1134/S1027451010020060

    Article  Google Scholar 

  23. V. E. Zhivulin, L. A. Pesin, E. A. Belenkov, et al., Polym. Degrad. Stab. 172, 109059 (2020). https://doi.org/10.1016/j.polymdegradstab.2019.109059

    Article  CAS  Google Scholar 

  24. M. Wojdyr, J. Appl. Crystallogr. 43, 1126 (2010). https://doi.org/10.1107/S0021889810030499

    Article  CAS  Google Scholar 

  25. V. Pogorelov, L. Bulavin, I. Doroshenko, et al., J. Mol. Struct. 708, 61 (2004). https://doi.org/10.1016/j.molstruc.2004.03.003

    Article  CAS  Google Scholar 

  26. V. Pogorelov, A. Yevglevsky, I. Doroshenko, et al., Superlattices Microst. 44, 571 (2008). https://doi.org/10.1016/j.spmi.2008.01.014

    Article  CAS  Google Scholar 

  27. C. Fukuie, K. Ameno, S. Ameno, et al., Igaku No Ayumi 143, 657 (1998).

    Google Scholar 

  28. T. L. Kuo, D. L. Lin, R. H. Liu, et al., Forensic Sci. Int. 121, 134 (2001). https://doi.org/10.1016/S0379-0738(01)00463-7

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Dr. I. Yu. Doroshenko for her interest in the work, helpful discussion of the experimental results, and valuable comments on their interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Pesin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhivulin, V.E., Zlobina, N.A., Evsyukov, S.E. et al. Changes in the Shape of the CH Absorption Band in the IR Spectra of the Chemicaly Dehydrofluorinated Poly(Vinylidene Fluoride) Film During Aging. J. Surf. Investig. 15, 12–15 (2021). https://doi.org/10.1134/S1027451021010171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021010171

Keywords:

Navigation