Skip to main content
Log in

Modification of the IR Spectra Shape in the 2000–2300 cm–1 Absorption Band upon the Aging of a Chemically Dehydrofluorinated Poly(vinylidene fluoride) Film

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

The stability of the atomic structure and physical and chemical properties of new materials is of crucial importance for their practical use. Long-term (about 120 000 min) and regular monitoring of the molecular structure of two samples of poly(vinylidene fluoride) (PVDF) film after its five-hour chemical dehydrofluorination and rinsing with ethanol are performed using infrared (IR) spectroscopy. The samples differed in low-pressure exposure duration before measurement. Changes in the absorption spectra of the stretching vibrations of triple carbon-carbon bonds are analyzed in the wave-number range of 2000–2300 cm–1. The initial PVDF film is transparent in this region, but, after dehydrofluorination, an absorption band of complex shape is observed in it. Visually, the band consists of three wide features with centers around 2050, 2100, and 2160 cm–1. The first and the second bands are absent immediately after synthesis, but, as the samples age, they appear and grow proportionally to each other and time intervals of rapid and slow growth, as well as a stabilization period, are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Carbyne and Carbynoid Structures, Ed. by R. B. Heimann (Kluwer Acad., Dordrecht, 1999).

    Google Scholar 

  2. W. Luo and W. Windl, Carbon 47, 367 (2009). https://doi.org/10.1016/j.carbon.2008.10.017

    Article  CAS  Google Scholar 

  3. T. G. Shumilova, Yu. V. Danilova, M. V. Gorbunov, et al., Dokl. Akad. Nauk. 436, 394 (2011).

    Google Scholar 

  4. E. A. Belenkov and I. V. Shakhova, Phys. Solid State 53, 2385 (2011).

    Article  CAS  Google Scholar 

  5. A. Freitas, S. Azevedo, and J. R. Kaschny, Physica E 84 444 (2016). https://doi.org/10.1016/j.physe.2016.07.018

    Article  CAS  Google Scholar 

  6. Y. Prazdnikov, Journal of Modern Physics. 3 (9), 895 (2012). https://doi.org/10.4236/jmp.2012.39117

  7. E. A. Buntov, A. F. Zatsepin, M. B. Guseva, et al., Carbon 117, 271 (2017). https://doi.org/10.1016/j.carbon.2017.03.010

    Article  CAS  Google Scholar 

  8. C.-S. Kang, K. Fujisawa, Y.-I. Ko, H. Muramatsu, et al., Carbon 107, 217 (2016). https://doi.org/10.1016/j.carbon.2016.05.069

    Article  CAS  Google Scholar 

  9. N. F. Andrade, T. L. Vasconcelos, C. P. Gouvea, et al., Carbon 90, 172 (2015). https://doi.org/10.1016/j.carbon.2015.04.001

    Article  CAS  Google Scholar 

  10. D. A. Kovriguine and S. P. Nikitenkova, Phys. Solid State 58, 611 (2016).

    Article  CAS  Google Scholar 

  11. L. Ravagnan, F. Siviero, C. Lenardi, et al., Phys. Rev. Lett. 89, 285506 (2002). https://doi.org/10.1103/PhysRevLett.89.285506

    Article  CAS  Google Scholar 

  12. L. Shi, P. Rohringer, M. Wanko, et al., Phys. Rev. Mater. 1 (7), 075601 (2017). doi . Rev. Materials.1. 075601https://doi.org/10.1103/Phys

  13. V. V. Korshak, Yu. P. Kudryavtsev, V. V. Khvostov, et al., Carbon 25 (6), 735 (1987). https://doi.org/10.1016/0008-6223(87)90143-6

    Article  CAS  Google Scholar 

  14. S. E. Evsyukov and V. G. Babaev, et al., Carbon 30 (2), 213 (1992). https://doi.org/10.1016/0008-6223(92)90082-8

    Article  Google Scholar 

  15. S. Zhang, J. Shen, X. Qiu, et al., J. Power Sources 153, 234 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.020

    Article  CAS  Google Scholar 

  16. A. Kimoto and N. Sugitani, Meas. Sci. Technol. Medical and Healthcare Textiles, Ed. by S. C. Anand (Wood Head, Manchester, 2010), 21, 075202 (2010). https://doi.org/10.1088/0957-0233/21/7/16

  17. V. V. Kochervinskii, Usp. Khim. 65, 936 (1996).

    Article  CAS  Google Scholar 

  18. A. Le Moel, J. P. Duraud, and E. Balanzat, Nucl. Instrum. Methods Phys. Res., Sect. B 18 (1–6), 59 (1986). https://doi.org/10.1016/S0168-583X(86)80012-X

    Article  Google Scholar 

  19. E. H. Adem, S. J. Bean, C. M. Demanet, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 32 (1–4), 182 (1988). https://doi.org/10.1016/0168-583X(88)90206-

    Article  Google Scholar 

  20. M. D. Duca, C. L. Plosceanu, and T. Pop, J. Appl. Polym. Sci. 67 (13), 2125 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980328)67:13<2125::AID-APP2>3.0.CO;2-

    Article  CAS  Google Scholar 

  21. M. M. Brzhezinskaya, V. M. Morilova, E. M. Baitinger, et al., Polym. Degrad. Stab. 99, 176 (2014). https://doi.org/10.1016/j.polymdegradstab.2013.11

    Article  CAS  Google Scholar 

  22. S. S. Chebotaryov, A. A. Volegov, L. A. Pesin, et al., Physica E 36 (2), 184 (2007). https://doi.org/10.1016/j.physe.2006.10.011

    Article  CAS  Google Scholar 

  23. S. S. Chebotaryov, E. M. Baitinger, A. A. Volegov, et al., Radiat. Phys. Chem. 75 (11), 2024 (2006). https://doi.org/10.1016/j.radphyschem.2005.12

    Article  CAS  Google Scholar 

  24. L. A. Pesin, V. M. Morilova, D. A. Zherebtsov, et al., Polym. Degrad. Stab. 98 (2), 666 (2013). https://doi.org/10.1016/j.polymdegradstab.2012.11

    Article  CAS  Google Scholar 

  25. A. Le Moel, J. P. Duraud, C. Lecomte, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 32 (1–4), 115 (1988). https://doi.org/10.1016/0168-583X(88)90192-926

    Article  Google Scholar 

  26. A. L. Sidelnikova, V. P. Andreichuk, L. A. Pesin, et al., Polym. Degrad. Stab. 110, 308 (2014). https://doi.org/10.1016/j.polymdegradstab.2014.09.009

    Article  CAS  Google Scholar 

  27. E. Morikawa, J. Choi, H. M. Manohara, et al., J. Appl. Phys. 87 (8), 4010 (2000). https://doi.org/10.1063/1.372447

    Article  CAS  Google Scholar 

  28. G. J. Ross, J. F. Watts, M. P. Hill, et al., Polymer 41, 1685 (2000). https://doi.org/10.1016/S0032-3861(99)00343-2

    Article  CAS  Google Scholar 

  29. G. J. Ross, J. F. Watts, M. P. Hill, and P. Morrissey, Polymer 42, 403 (2001). https://doi.org/10.1016/S0032-3861(00)00328-1

    Article  CAS  Google Scholar 

  30. Yu. P. Kudryavtsev, S. E. Evsyukov, and V. G. Babaev, Russ. Chem. Bull. 41, 966 (1992).

    Article  Google Scholar 

  31. I. G. Margamov, L. A. Pesin, Yu. P. Kudryavtsev, and S. E. Evsyukov, Appl. Surf. Sci. 148 (3–4), 183 (1999). https://doi.org/10.1016/S0169-4332(99)00154

    Article  CAS  Google Scholar 

  32. N. A. Mavrinskaya, L. A. Pesin, M. Baumgarten, et al., Magn. Reson. Solids EJ 10 (1), 31 (2008).

    Google Scholar 

  33. V. E. Zhivulin, N. A. Moskvina, I. V. Gribov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11, 927 (2017).

    Article  CAS  Google Scholar 

  34. V. E. Zhivulin, V. M. Chernov, A. A. Osipov, et al., Phys. Solid State 59, 1414 (2017).

    Article  CAS  Google Scholar 

  35. L. A. Pesin, S. S. Chebotaryov, A. M. Kuvshinov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 4, 214 (2010).

    Article  Google Scholar 

  36. V. E. Zhivulin, L. A. Pesin, E. A. Belenkov, V. A. Greshnyakov, N. A. Zlobina, and M. M. Brzhezinskaya, Polym. Degrad. Stab 172, 109059 (2020).

    Article  CAS  Google Scholar 

  37. V. E. Zhivulin, N. A. Zlobina, and L. A. Pesin, Bull. Tomsk Polytech. Univ. Geo Assets Engineering 326 (10), 150 (2015).

  38. N. L. Alpert, W. E. Keiser, and H. A. Szymanski, IR: Theory and Practice of Infrared Spectroscopy (Springer, 2012).

    Google Scholar 

  39. V. Pogorelov, I. Doroshenko, G. Pitsevich, et al., J. Mol. Liq. 235, 7 (2017). https://doi.org/10.1016/j.molliq.2016.12.037

    Article  CAS  Google Scholar 

  40. A. Vasylieva, I. Doroshenko, Ye. Vaskivskyi, et al., J. Mol. Struct. 1167, 232 (2018). https://doi.org/10.1016/j.molstruc.2018.05.002

    Article  CAS  Google Scholar 

  41. G. A. Pitsevich, I. Yu. Doroshenko, V. E. Pogorelov, et al., Am. J. Chem. 2 (4), 218 (2012). https://doi.org/10.5923/j.chemistry.20120204

    Article  CAS  Google Scholar 

  42. G. A. Pitsevich, I. Yu. Doroshenko, V. E. Pogorelov, et al., Fiz. Nizk. Temp. (Kiev) 39 (4), 499 (2013).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Prof. I. Y. Doroshenko for her interest in the work, useful discussion of the experimental results, and valuable comments on their interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Pesin.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhivulin, V.E., Khairanov, R.K., Zlobina, N.A. et al. Modification of the IR Spectra Shape in the 2000–2300 cm–1 Absorption Band upon the Aging of a Chemically Dehydrofluorinated Poly(vinylidene fluoride) Film. J. Surf. Investig. 14, 1144–1151 (2020). https://doi.org/10.1134/S1027451020060178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020060178

Keywords:

Navigation