Skip to main content
Log in

Electrochemistry in ionic liquids: Case study of a manganese corrole

  • Section 3. Electron Transfer Kinetics and Electrochemical Processes
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Voltammetry of [5,10,15-tris(pentafluorophenylcorrole)]Mn(III) was investigated in four different ionic liquids (ILs): 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIm-TFSI); 1-ethyl-3-methylimidazolium ethylsulfate (EMIm-EtOSO3); 1-ethyl-3-methylimidazolium triflate (EMIm-OTf); and 1-ethyl-3-methylimidazolium tetracyanoborate (EMIm-TCB). We found that MnIV/III E 1/2 values depend on IL counter anion: OTf–< EtOSO3 < TFSI < TCB. In EMIm-TCB and BMIm- TFSI, reversible, diffusion-controlled MnIV/III reactions occurred, as evidenced in each case by the ratio of anodic to cathodic diffusion coefficients over a range of scan rates. Axial coordination was evidenced by a cathodic to anodic diffusion coefficient ratio greater than one, an increasing cathodic to anodic peak current ratio with increasing scan rate, and a split Soret band in the UV-vis spectrum of the complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Earle, M.J. and Seddon, K.R., Pure Appl. Chem., 2000, vol. 72, p. 1391.

    Article  CAS  Google Scholar 

  2. Evans, R.G., Klymenko, O.V., and Price, P.D., Chem. Phys. Chem., 2005, vol. 6, p. 526.

    Article  CAS  Google Scholar 

  3. Rogers, E.I., Silvester, D.S., and Poole, D.L., J. Phys. Chem. C, 2008, vol. 112, p. 2729.

    Article  CAS  Google Scholar 

  4. Cabral, D., Howlett, P.C., and Pringle, J.M., Electrochim. Acta, 2015, vol. 180, p. 419.

    Article  CAS  Google Scholar 

  5. O’Mahony, A.M., Silvester, D.S., and Aldous, L., J. Chem. Eng. Data, 2008, vol. 53, p. 2884.

    Article  Google Scholar 

  6. Klähn, M. and Seduraman, A., J. Phys. Chem. B, 2015, vol. 119, p. 10066.

    Article  Google Scholar 

  7. Oh, Y. and Hu, X., Chem. Commun., 2015, vol. 51, p. 13698.

    Article  CAS  Google Scholar 

  8. Zeng, G., Qiu, J., and Hou, B., Chem. Eur. J., 2015, vol. 21, p. 13502.

    Article  CAS  Google Scholar 

  9. Fu, C., Aldous, L., and Dickinson, E.J.F., Chem. Commun., 2011, vol. 47, p. 7083.

    Article  CAS  Google Scholar 

  10. Aviv-Harel, I. and Gross, Z. Chem. Eur. J., 2009, vol. 15, p. 8382.

    Article  CAS  Google Scholar 

  11. Aviv, I. and Gross, Z., Chem. Commun., 2007, p. 1987.

    Google Scholar 

  12. Meier-Callahan, A.E., di Bilio, A.J., and Simkhovich, L., Inorg. Chem., 2001, vol. 40, p. 6788.

    Article  CAS  Google Scholar 

  13. Grodkowski, J., Neta, P., and Fujita, E., J. Phys. Chem. A, 2002, vol. 106, p. 4772.

    Article  CAS  Google Scholar 

  14. Zdilla, M.J. and Abu-Omar, M.M., J. Am. Chem. Soc., 2006, vol. 128, p. 16971.

    Article  CAS  Google Scholar 

  15. Gao, Y., Liu, J., and Wang, M., Tetrahedron, 2007, vol. 63, p. 1987.

    Article  CAS  Google Scholar 

  16. Schechter, A., Stanevsky, M., and Mahammed, A., Inorg. Chem., 2012, vol. 51, p. 22.

    Article  CAS  Google Scholar 

  17. Shen, J., El Ojaimi, M., and Chkounda, M., Inorg. Chem., 2008, vol. 47, p. 7717.

    Article  CAS  Google Scholar 

  18. Liu, H-Y., Mahmood, M.H., and Qiu, S-X.S., Coord. Chem. Rev., 2013, vol. 257, p. 1306.

    Article  CAS  Google Scholar 

  19. Golubkov, G., Bendix, J., and Gray, H.B., Angew. Chem. Int. Ed. Engl., 2001, vol. 40, p. 2132.

    Article  CAS  Google Scholar 

  20. Mingos, D.M.P., Day, P., and Dahl, J.P., Molecular Electronic Structures of Transition Metal Complexes I. Structure and Bonding, New York: Springer, 2012, p. 49.

    Google Scholar 

  21. Schme_Mingosisser, M., Illner, P., and Puchta, R., Chem. Eur. J., 2012, vol. 18, p. 10969.

    Article  Google Scholar 

  22. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001.

    Google Scholar 

  23. Ohno, H., Electrochemical Aspects of Ionic Liquids, New York: Wiley, 2011.

    Book  Google Scholar 

  24. Fröba, A.P., Wasserscheid, P., and Gerhard, D., J. Phys. Chem. B, 2007, vol. 111, p. 12817.

    Article  Google Scholar 

  25. Barrosse-Antle, L.E., Bond, A.M., and Compton, R.G., Chem. Asian J., 2010, vol. 5, p. 202.

    Article  CAS  Google Scholar 

  26. Yan, P-F., Yang, M., and Liu, X., J. Chem. Thermodyn., 2010, vol. 42, p. 817.

    Article  CAS  Google Scholar 

  27. Edwards, N.Y., Elkey, R.A., and Loring, M.I., Inorg. Chem., 2005, vol. 44, p. 3700.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay R. Winkler.

Additional information

Published in Russian in Elektrokhimiya, 2017, Vol. 53, No. 10, pp. 1342–1347.

This paper is the authors’ contribution to the special issue of Russian Journal of Electrochemistry dedicated to the 100th anniversary of the birth of the outstanding Soviet electrochemist Veniamin G. Levich.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McNicholas, B.J., Blumenfeld, C., Kramer, W.W. et al. Electrochemistry in ionic liquids: Case study of a manganese corrole. Russ J Electrochem 53, 1189–1193 (2017). https://doi.org/10.1134/S1023193517100068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193517100068

Keywords

Navigation