Skip to main content
Log in

Polyoxometalates in Imidazolim-based Ionic Liquids: Acceptor Number and Polarity Estimated from Their Voltammetric Behaviour

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The selection of an appropriate solvent is essential for achieving high yields and selectivity in chemical reactions. The chemical and physical parameters of organic solvents have been classified into several groups, and solvents can be compared with each other with respect to these properties. The acceptor number (AN), donor number (DN) and polarity (ETN) have been widely accepted and used for theoretically and quantitatively evaluating the properties of organic solvents. In a similar manner, the AN, DN and ETN of room temperature ionic liquids (RTILs) have been estimated from spectral changes in solvatochromic compounds. In this paper, the AN and ETN of eight types of imidazolium-based RTILs were estimated from the relationship between the AN and ETN values and the first redox potential obtained from the voltammograms of polyoxometalates (POMs) in various organic solvents. The obtained parameters were compared with those estimated by spectrophotometric methods reported previously by several groups. This new method for estimating the AN and ETN of RTILs using the voltammetric behaviour of POMs with low charge density and high symmetry could provide the other path to obtain more reliable AN and ETN of RTILs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Macfarlane, M. Kar, and J. Pringle, “Fundamentals of Ionic Liquids”, 2017, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Germany.

    Book  Google Scholar 

  2. L. E. Barrosse-Antle, A. M. Bond, R. G. Compton, A. M. O’Mahony, E. I. Rogers, and D. S. Silvester, Chem. Asian J., 2010, 5, 202.

    Article  CAS  PubMed  Google Scholar 

  3. T. L. Greaves and C. J. Drummond, Chem. Rev., 2015, 115, 11379.

    Article  CAS  PubMed  Google Scholar 

  4. P. Wasserscheid and W. Keim, Angew. Chem., Int. Ed., 2000, 39, 3773.

    Article  Google Scholar 

  5. R. Sheldon, Chem. Commun., 2001, 2399.

    Google Scholar 

  6. T. Welton, Coord. Chem. Rev., 2004, 248, 2459.

    Article  CAS  Google Scholar 

  7. V. I. Pârvulescu and C. Hardacre, Chem. Rev., 2007, 107, 2615.

    Article  PubMed  Google Scholar 

  8. T. L. Greaves and C. J. Drummond, Chem. Rev., 2008, 108, 206.

    Article  CAS  PubMed  Google Scholar 

  9. J. P. Hallett and T. Welton, Chem. Rev., 2011, 111, 3508.

    Article  CAS  PubMed  Google Scholar 

  10. M. Smiglak, J. M. Pringle, X. Lu, L. Han, S. Zhang, H. Gao, D. R. MacFarlane, and R. D. Rogers, Chem. Commun., 2014, 50, 9228.

    Article  CAS  Google Scholar 

  11. E. P. Barbara Kirchner, “Ionic Liquids II”, 2018, Springer International Publishing, Switzerland.

    Book  Google Scholar 

  12. K. S. Egorova, E. G. Gordeev, and V. P. Ananikov, Chem. Rev., 2017, 117, 7132.

    Article  CAS  PubMed  Google Scholar 

  13. D. Wei and A. Ivaska, Anal. Chim. Acta, 2008, 607, 126.

    Article  CAS  PubMed  Google Scholar 

  14. M. J. A. Shiddiky and A. A. J. Torriero, Biosens. Bioelectron., 2011, 26, 1775.

    Article  CAS  PubMed  Google Scholar 

  15. M. C. Buzzeo, R. G. Evans, and R. G. Compton, ChemPhysChem, 2004, 5, 1106.

    Article  CAS  PubMed  Google Scholar 

  16. M. C. Buzzeo, C. Hardacre, and R. G. Compton, Anal. Chem., 2004, 76, 4583.

    Article  CAS  PubMed  Google Scholar 

  17. D. S. Silvester, Analyst, 2011, 136, 4871.

    Article  CAS  PubMed  Google Scholar 

  18. J. Ge˛bicki, A. Kloskowski, W. Chrzanowski, P. Stepnowski, and J. Namiesnik, Crit. Rev. Anal. Chem., 2016, 46, 122.

    Article  PubMed  Google Scholar 

  19. D. Silvester, Current Opinion in ElectroChemistry, 2019, 15.

    Google Scholar 

  20. D. S. Silvester and L. Aldous, in “Electrochemical Strategies in Detection Science”, 2016, The Royal Society of Chemistry, 341–386.

    Google Scholar 

  21. T. W. Christian Reichardt, “Solvents and Solvent Effects in Organic Chemistry”, 2010, Wiley-VCH, Weinheim.

    Book  Google Scholar 

  22. M. T. Pope, “Heteropoly and Isopoly Oxometalates”, 1983, Springer-Verlag, Berlin.

    Book  Google Scholar 

  23. A. P. Roberts, “Polyoxometalates: Properties, Structure and Synthesis”, 2016, NOVA Science Publishers, UK.

    Google Scholar 

  24. T. Ueda, ChemElectroChem, 2018, 5, 823.

    Article  CAS  Google Scholar 

  25. K. Maeda, H. Katano, T. Osakai, S. Himeno, and A. Saito, J. Electroanal. Chem., 1995, 389, 167.

    Article  Google Scholar 

  26. K. Nakajima, K. Eda, and S. Himeno, Inorg. Chem., 2010, 49, 5212.

    Article  CAS  PubMed  Google Scholar 

  27. T. Ueda, J. I. Nambu, J. Lu, S. X. Guo, Q. Li, J. F. Boas, L. L. Martin, and A. M. Bond, Dalton Trans., 2014, 43, 5462.

    Article  CAS  PubMed  Google Scholar 

  28. T. Ueda, M. Ohnishi, D. Kawamoto, S. X. Guo, J. F. Boas, and A. M. Bond, Dalton Trans., 2015, 44, 11660.

    Article  CAS  PubMed  Google Scholar 

  29. L. Crowhurst, P. R. Mawdsley, J. M. Perez-Arlandis, P. A. Salter, and T. Welton, Phys. Chem. Chem. Phys., 2003, 5, 2790.

    Article  CAS  Google Scholar 

  30. Y. Kimura, M. Fukuda, T. Fujisawa, and M. Terazima, Chem. Lett., 2005, 34, 338.

    Article  CAS  Google Scholar 

  31. C. Reichardt, Green Chem., 2005, 7, 339.

    Article  CAS  Google Scholar 

  32. R. Lungwitz, M. Friedrich, W. Linert, and S. Spange, New J. Chem., 2008, 32, 1493.

    Article  CAS  Google Scholar 

  33. M. Schmeisser, P. Illner, R. Puchta, A. Zahl, and R.. van Eldik, Chem. Eur. J., 2012, 18, 10969.

    Article  CAS  PubMed  Google Scholar 

  34. M. Holzweber, R. Lungwitz, D. Doerfler, S. Spange, M. Koel, H. Hutter, and W. Linert, Chem. Eur. J., 2013, 19, 288.

    Article  CAS  PubMed  Google Scholar 

  35. J. Alarcón-Espósito, R. Contreras, R. A. Tapia, and P. R. Campodónico, Chem. Eur. J., 2016, 22, 13347.

    Article  PubMed  Google Scholar 

  36. Y. Marcus, “Ionic Liquid Properties: From Molten Salts to RTILs”, 2016, Springer International Publishing, Switzerland.

    Book  Google Scholar 

  37. T. Ueda, M. Komatsu, and M. Hojo, Inorg. Chim. Acta, 2003, 344, 77.

    Article  CAS  Google Scholar 

  38. T. Ueda, M. Suzuki, and T. Toya, J. Cluster Sci., 2016, 27, 501.

    Article  CAS  Google Scholar 

  39. S. Himeno, M. Takamoto, M. Hoshiba, A. Higuchi, and M. Hashimoto, Bull. Chem. Soc. Jpn., 2004, 77, 519.

    Article  CAS  Google Scholar 

  40. S. Himeno, H. Tatewaki, and M. Hashimoto, Bull. Chem. Soc. Jpn., 2001, 74, 1623.

    Article  CAS  Google Scholar 

  41. J. Li, C. L. Bentley, T. Ueda, A. M. Bond, and J. Zhang, J. Electroanal. Chem., 2018, 819, 193.

    Article  CAS  Google Scholar 

  42. T. Konishi, K. Kodani, T. Hasegawa, S. Ogo, S. X. Guo, J. F. Boas, J. Zhang, A. M. Bond, and T. Ueda, Inorg. Chem., 2020, 59, 10522.

    Article  CAS  PubMed  Google Scholar 

  43. G. Bernardini, A. G. Wedd, C. Zhao, and A. M. Bond, Dalton Trans., 2012, 41, 9944.

    Article  CAS  PubMed  Google Scholar 

  44. G. Bernardini, A. G. Wedd, C. Zhao, and A. M. Bond, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 11552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. E. I. Rogers, D. S. Silvester, D. L. Poole, L. Aldous, C. Hardacre, and R. G. Compton, J. Phys. Chem. C, 2008, 112, 2729.

    Article  CAS  Google Scholar 

  46. A. J. Bard and L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications”, 2nd ed., 2000, John Wiley & Sons, New York.

    Google Scholar 

  47. K. Paduszyn´ski and U. Doman´ska, J. Chem. Inf. Model., 2014, 54, 1311.

    Article  PubMed  Google Scholar 

  48. M. Schmeisser and R.. van Eldik, Dalton Trans., 2014, 43, 15675.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Kochi University President’s Discretionary Grant, the Special Grant for Biomass Refinery of Marine Algae and Wood, the JSPS Core-to-Core Collaboration in Advanced Research Network, International Network on Polyoxometalate Science for Advanced Functional Energy Materials, the Cooperative Research Program of “Network Joint Research Center for Materials and Devices”, Cabinet Office grant-in-aid, and the Advanced Next-Generation Greenhouse Horticulture by IoP (Internet of Plants), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadaharu Ueda.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishida, H., Azuma, S., Yamasaki, N. et al. Polyoxometalates in Imidazolim-based Ionic Liquids: Acceptor Number and Polarity Estimated from Their Voltammetric Behaviour. ANAL. SCI. 37, 1131–1137 (2021). https://doi.org/10.2116/analsci.20P412

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20P412

Keywords

Navigation