Skip to main content
Log in

Phylogenetic Relationships among Puddle Duck Species in Egypt using COI Gene Variations in mtDNA

  • ANIMAL GENETICS
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Egypt is an important geographical location for wintering puddle ducks. In order to investigate their relationships, 30 ducks from genus Anas were sampled from different aquatic regions of New Damietta, Damietta Governorate, Egypt. Many phylogenetic studies used mitochondrial cytochrome c oxidase subunit I (COI) as an effective molecular marker. The COI barcodes of six ducks species were analyzed in this work from one genus Anas belonging to family Anatidae. The studied species of ducks were identified correctly from their DNA barcodes. The distances were calculated between barcodes by utilizing of utilizing Kimura two parameter (K2P). Maximum Likelihood was used to construct a phylogenetic tree, which grouped the entire genus into three divergent clades. Within family Anatidae, COI analysis supported a basal position of Anas clypeata and Anas querquedula. It also supported the sister group relationship between Anas carolinensis and Anas platyrhynchos and the cluster comprising Anas acuta and Anas strepera. It was concluded that most Anatidae species have distinct COI sequences. DNA barcoding is a powerful molecular tool for species identification and phylogenetic inference of Anatidae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Delacour, J. and Mayr, E., The family Anatidae, Wilson Bull., 1945, vol. 57, pp. 3–55.

    Google Scholar 

  2. Del Hoyo, J., Elliott, A., and Sargatal, J., Handbook of the Birds of the World, Barcelona: Lynx Editions, 1992, vol. 1.

    Google Scholar 

  3. Livezey, B.C., A phylogenetic classification of waterfowl (Aves: Anseriformes), including selected fossil species, Ann. Carnegie Mus., 1997, vol. 66, no. 4, pp. 457–496.

    Google Scholar 

  4. Livezey, B.C., Phylogenetic relationships of several subfossil Anseriformes of New Zealand, in Occasional Papers of the Museum of Natural History, Lawrence, Kan.: University of Kansas, 1989, vol. 128, pp. 1–25.

  5. Livezey, B.C., A phylogenetic analysis of geese and swans (Anseriformes: Anserinae), including selected fossil species, Syst. Biol., 1996, vol. 45, no. 4, pp. 415–450. https://doi.org/10.1093/sysbio/45.4.415

    Article  Google Scholar 

  6. Johnson, K.P. and Sorenson, M.D., Comparing molecular evolution in two mitochondrial protein coding genes (cytochrome b and ND2) in the dabbling ducks (Tribe: Anatini), Mol. Phylogenet. Evol., 1998, vol. 10, no. 1, pp. 82–94. https://doi.org/10.1006/mpev.1997.0481

    Article  CAS  PubMed  Google Scholar 

  7. Johnson, K.P. and Sorenson, M.D., Phylogeny and biogeography of dabbling ducks (genus: Anas): a comparison of molecular and morphological evidence, Auk, 1999, vol. 116, no. 3, pp. 792–805. https://doi.org/10.2307/4089339

    Article  Google Scholar 

  8. Sibley, C.G. and Ahlquist, J.E., Phylogeny and Classification of Birds: A Study in Molecular Evolution, New Haven, CT: Yale University Press, 1990.

    Google Scholar 

  9. Zimmer, R., Erdtmann, B., Thomas, W.K., and Quinn, T.W., Phylogenetic analysis of the Coscoroba coscoroba using mitochondrial srRNA gene sequences, Mol. Phylogenet. Evol., 1994, vol. 3, no. 2, pp. 85–91. https://doi.org/10.1006/mpev.1994.1011

    Article  CAS  PubMed  Google Scholar 

  10. Sraml, M., Christidis, L., Easteal, S., et al., Molecular relationships within Australasian waterfowl (Anseriformes), Aust. J. Zool., 1996, vol. 44, no. 1, pp. 47–58. https://doi.org/10.1071/zo9960047

    Article  CAS  Google Scholar 

  11. Donne-Goussé, C., Laudet, V., and Hänni, C., A molecular phylogeny of Anseriformes based on mitochondrial DNA analysis, Mol. Phylogenet. Evol., 2002, vol. 23, no. 3, pp. 339–356. https://doi.org/10.1016/s1055-7903(02)00019-2

    Article  PubMed  Google Scholar 

  12. Liu, G., Zhou, L., Zhang, L., et al., The complete mitochondrial genome of bean goose (Anser fabalis) and implications for Anseriformes taxonomy, PLoS One, 2013, vol. 8, no. 5. e63334. https://doi.org/10.1371/journal.pone.0063334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun, Z., Pan, T., Hu, C., et al., Rapid and recent diversification patterns in Anseriformes birds: inferred from molecular phylogeny and diversification analyses, PLoS One, 2017, vol. 12, no. 9. e0184529. https://doi.org/10.1371/journal.pone.0184529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Livezey, B.C., A phylogenetic analysis and classification of recent dabbling ducks (tribe Anatini) based on comparative morphology, Auk, 1991, vol. 108, no. 3, pp. 471–507. https://doi.org/10.2307/4088089

    Article  Google Scholar 

  15. Kessler, L.G. and Avise, J.C., Systematic relationships among waterfowl (Anatidae) inferred from restriction endonuclease analysis of mitochondrial DNA, Syst. Biol., 1984, vol. 33, no. 4, pp. 370–380. https://doi.org/10.1093/sysbio/33.4.370

    Article  Google Scholar 

  16. Patton, J.C. and Avise, J.C., Evolutionary genetics of birds IV rates of protein divergence in waterfowl (Anatidae), Genetica, 1986, vol. 68, pp. 129–143. https://doi.org/10.1007/BF02424410

    Article  Google Scholar 

  17. Avise, J.C., Ankney, C.D., and Nelson, W.S., Mitochondrial gene trees and the evolutionary relationship of mallard and black ducks, Evol., 1990, vol. 44, no. 4, pp. 1109–1119. https://doi.org/10.1111/j.1558-5646.1990.tb03829.x

    Article  Google Scholar 

  18. Tuohy, J.M., McHugh, K.P., and de Kloet, S.R., Systematic relationships among some Anatini as derived from restriction-endonuclease analysis of a repeated DNA component, Auk, 1992, vol. 109, no. 3, pp. 465–473.

    Google Scholar 

  19. Omland, K.E., Character congruence between a molecular and a morphological phylogeny for dabbling ducks (Anas), Syst. Biol., 1994, vol. 43, no. 3, pp. 369–386. https://doi.org/10.1093/sysbio/43.3.369

    Article  Google Scholar 

  20. Omland, K.E., Examining two standard assumptions of ancestral reconstructions: repeated loss of dichromatism in dabbling ducks (Anatini), Evol., 1997, vol. 51, no. 5, pp. 1636–1646. https://doi.org/10.1111/j.1558-5646.1997.tb01486.x

    Article  Google Scholar 

  21. Avise, J.C., Alisauskas, R.T., Nelson, W.S., and Ankney, C.D., Matriarchal population genetic structure in an avian species with female natal philopatry, Evol., 1992, vol. 46, no. 4, pp. 1084–1096. https://doi.org/10.1111/j.1558-5646.1992.tb00621.x

    Article  Google Scholar 

  22. Zink, R.M., Rohwer, S., Andreev, A.V., and Dittmann, D.L., Trans-Beringia comparisons of mitochondrial DNA differentiation in birds, Condor, 1995, vol. 97, no. 3, pp. 639–649. https://doi.org/10.2307/1369173

    Article  Google Scholar 

  23. Talbot, S.L. and Shields, G.F., Phylogeography of brown bears (Ursus arctos) of Alaska and paraphyly within the Ursidae, Mol. Phylogenet. Evol., 1996, vol. 5, no. 3, pp. 477–494. https://doi.org/10.1006/mpev.1996.0044

    Article  CAS  PubMed  Google Scholar 

  24. Omland, K.E. and Kondo, B.K., Phylogenetic studies of plumage evolution and speciation in New World orioles (Icterus), Acta Zool., 2006, vol. 52, pp. 320–326.

    Google Scholar 

  25. Livezey, B.C., A phylogenetic analysis of recent anseriform genera using morphological characters, Auk, 1986, vol. 103, no. 4, pp. 737–754. https://doi.org/10.1093/auk/103.4.737

    Article  Google Scholar 

  26. Johnsgard, P.A., Hybridization in the Anatidae and its taxonomic implications, Condor, 1960, vol. 62, pp. 25–33. https://doi.org/10.2307/1365656

    Article  Google Scholar 

  27. Rhymer, J.M. and Simberloff, D., Extinction by hybridization and introgression, Annu. Rev. Ecol. Syst., 1996, vol. 27, pp. 83–109. https://doi.org/10.1146/annurev.ecolsys.27.1.83

    Article  Google Scholar 

  28. Tubaro, P.L. and Lijtmaer, D.A., Hybridization patterns and the evolution of reproductive isolation in ducks, Biol. J. Linn. Soc., 2002, vol. 77, no. 2, pp. 193–200. https://doi.org/10.1046/J.1095-8312.2002.00096.X

    Article  Google Scholar 

  29. Rhymer, J.M., Williams, M.J. and Braun, M.J., Mitochondrial analysis of gene flow between New Zealand mallards (Anas platyrhynchos) and grey ducks (A. superciliosa), Auk, 1994, vol. 111, no. 4, pp. 970–978. https://doi.org/10.2307/4088829

    Article  Google Scholar 

  30. Kulikova, I.V., Zhuravlev, Y.N. and McCracken, K.G., Asymmetric hybridization and sex-biased gene flow between eastern spot-billed ducks (Anas zonorhyncha) and mallards (A. platyrhynchos) in the Russian Far East, Auk, 2004, vol, 121, no. 3, pp. 930–949. https://doi.org/10.1642/0004-8038(2004)121[0930:AH-ASGF]2.0.CO;2

    Article  Google Scholar 

  31. Lanyon, S.M., Phylogenetic frameworks: towards a firmer foundation for the comparative approach, Biol. J. Linn. Soc., 1993, vol. 49, no. 1, pp. 45–61. https://doi.org/10.1111/j.1095-8312.1993.tb00684.x

    Article  Google Scholar 

  32. Baker, A.J. and Marshall, H.D., Mitochondrial control region sequences as tools for understanding evolution, in Avian Molecular Evolution and Systematics, Midell, D.P., Ed., San Diego: Academic, 1997, p. 51–82.

    Google Scholar 

  33. Mindell, D.P., Sorenson, M.D., Huddleston, C.J., et al., Phylogenetic relationships among and within select avian orders based on mitochondrial DNA, in Avian Molecular Evolution and Systematics, Midell, D.P., Ed., San Diego: Academic, 1997, p. 211–247.

    Google Scholar 

  34. Moore, W.S. and Defilippis, V.R., The window of taxonomic resolution for phylogenies based on mitochondrial cytochrome b, in Avian Molecular Evolution and Systematics, Midell, D.P., Ed., San Diego: Academic, 1997, pp. 84–119.

    Google Scholar 

  35. Delport, W., Ferguson, J.W.H., and Bloomer, P., Characterization and evolution of the mitochondrial DNA control region in hornbills (Bucerotiformes), J. Mol. Evol., 2002, vol. 54, no. 6, pp. 794–806. https://doi.org/10.1007/s00239-001-0083-0

    Article  CAS  PubMed  Google Scholar 

  36. Aquadro, C.F. and Greenberg, B.D., Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals, Genetics, 1983, vol. 103, no. 2, pp. 287–312.

    Article  CAS  Google Scholar 

  37. Lansman, R.A., Avise, J.C. and Huettel, M.D., Critical experimental test of the possibility of “paternal leakage” of mitochondrial DNA, Proc. Natl. Acad. Sci. USA., 1983, vol. 80, no. 7, pp. 1969–1971. https://doi.org/10.1073/pnas.80.7.1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cann, R.L., Brown, W.M., and Wilson, A.C., Polymorphic sites and the mechanism of evolution in human mitochondrial DNA, Genetics, 1984, vol. 106, no. 3, pp. 479–499.

    Article  CAS  Google Scholar 

  39. Hebert, P.D., Cywinska, A., Ball, S.L., et al., Biological identifications through DNA barcodes, Proc. Biol. Sci., 2003, vol. 270, no. 1512, pp. 313–321. https://doi.org/10.1098/rspb.2002.2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hebert, P.D., Ratnasingham, S., and deWaard, J.R., Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species, Proc. Biol. Sci., 2003, vol. 270, no. 1, pp. S96–S99. https://doi.org/10.1098/rsbl.2003.0025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hebert, P.D., Stoeckle, M.Y., Zemlak, T.S., and Francis, C.M., Identification of birds through DNA barcodes, PLoS Biol., 2004, vol. 2, no. 10, p. e312. https://doi.org/10.1371/journal.pbio.0020312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cai, Y., Yue, B., Jiang, W., et al., DNA barcoding on subsets of three families in Aves, Mitochondrial DNA, 2010, vol. 21, nos. 3–4, pp. 132–137. https://doi.org/10.3109/19401736.2010.494726

    Article  CAS  PubMed  Google Scholar 

  43. Breman, F.C., Jordaens, K., Sonet, G., et al., DNA barcoding and evolutionary relationships in Accipiter Brisson, 1760 (Aves, Falconiformes: Accipitridae) with a focus on African and Eurasian representatives, J. Ornithol., 2013, vol. 154, pp. 265–287. https://doi.org/10.1007/s10336-012-0892-5

    Article  Google Scholar 

  44. Kerr, K.C.R., Stoeckle, M.Y., Dove, C.J., et al., Comprehensive DNA barcode coverage of North American birds, Mol. Ecol. Notes, 2007, vol. 7, no. 4, pp. 535–543. https://doi.org/10.1111/j.1471-8286.2007.01670.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Johnsen, A., Rindal, E., Ericson, P.G.P., et al., DNA barcoding of Scandinavian birds reveals divergent lineages in trans-Atlantic species, J. Ornithol., 2010, vol, 151, no. 3, pp. 565–578. https://doi.org/10.1007/s10336-009-0490-3

    Article  Google Scholar 

  46. Tamura, K., Peterson, D., Peterson, N., et al., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, no. 10, pp. 2731–2739. https://doi.org/10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Olson, S.L. and Feduccia, A., Presbyornis and the origin of the Anseriformes (Aves: Charadriomorphae), Smithson. Contrib. Zool., 1980, vol. 323, pp. 1–24. https://doi.org/10.5479/si.00810282.323

    Article  Google Scholar 

  48. Olson, S.L., The fossil record of birds, in Avian Biology, Farner, D.S., Ed., Orlando: Academic Press, 1985, pp. 79–238.

    Google Scholar 

  49. Lee, W.S., Koo, T.H., and Park. J.Y., A Field Guide to the Birds of Korea, LG Evergreen Foundation, Korea, 2000.

  50. Avise, J.C., Arnold, J., Ball, R.M., et al., Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics, Annu. Rev. Ecol. Syst., 1987, vol. 18, pp. 489–522. https://doi.org/10.1146/annurev.es.18.110187.002421

    Article  Google Scholar 

  51. Moritz, C., Dowling, T.E., and Brown, W.M., Evolution of animal mitochondrial DNA: relevance for population biology and systematics, Annu. Rev. Ecol. Syst., 1987, vol. 18, pp. 269–292. https://doi.org/10.1146/annurev.es.18.110187.001413

    Article  Google Scholar 

  52. Moore, W.S., Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees, Evol., 1995, vol. 49, no. 4, pp. 718–726. https://doi.org/10.1111/j.1558-5646.1995.tb02308.x

    Article  Google Scholar 

  53. Avise, J.C., Phylogeography: The History and Formation of Species, Cambridge: Harvard University Press, 2000.

    Book  Google Scholar 

  54. Palumbi, S.R., Cipriano, F., and Hare, M.P., Predicting nuclear gene coalescence from mitochondrial data: the three-times rule, Evol., 2001, vol. 55, no. 5, pp. 859–868. https://doi.org/10.1111/j.0014-3820.2001.tb00603.x

    Article  CAS  Google Scholar 

  55. Funk, D.J. and Omland, K.E., Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA, Annu. Rev. Ecol. Evol. Syst., 2003, vol. 34, pp. 397–423. https://doi.org/10.1146/annurev.ecolsys.34.011802.132421

    Article  Google Scholar 

  56. Ballard, J.W.O. and Whitlock, M.C., The incomplete natural history of mitochondria, Mol. Ecol., 2004, vol. 13, no. 4, pp. 729–744. https://doi.org/10.1046/j.1365-294x.2003.02063.x

    Article  PubMed  Google Scholar 

  57. Kusumaningrum, H.P., Haryanti, W.D.U., and Rahayu, A.R., Phylogenetic analysis of duck species from tegal Indonesia using 18S ribosomal RNA and mitochondrial COI gene, Int. J. Poult. Sci., 2018, vol. 17, pp. 392–404. https://doi.org/10.3923/ijps.2018.392.404

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. M. Deef.

Ethics declarations

Conflict of interest. The author declares that no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional principles for the care and use of animals were observed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deef, L.E. Phylogenetic Relationships among Puddle Duck Species in Egypt using COI Gene Variations in mtDNA. Russ J Genet 57, 1189–1197 (2021). https://doi.org/10.1134/S1022795421100045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421100045

Keywords:

Navigation