Skip to main content
Log in

Subdomain finite element method with quartic B-splines for the modified equal width wave equation

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, a numerical solution of the modified equal width wave (MEW) equation, has been obtained by a numerical technique based on Subdomain finite element method with quartic B-splines. Test problems including the motion of a single solitary wave and interaction of two solitary waves are studied to validate the suggested method. Accuracy and efficiency of the proposed method are discussed by computing the numerical conserved laws and error norms L 2 and L . A linear stability analysis based on a Fourier method shows that the numerical scheme is unconditionally stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. B. Benjamin, J. L. Bona, and J. L. Mahoney, “Model equations for long waves in nonlinear dispersive media,” Philos. Trans. R. Soc. London Ser. A 272(1220), 47–78 (1972).

    Article  MATH  Google Scholar 

  2. Kh. O. Abdulloev, H. Bogolubsky, and V. G. Makhankov, “One more example of inelastic soliton interaction,” Phys. Lett. A 56(6), 427–438 (1967).

    Article  MathSciNet  Google Scholar 

  3. L. R. T. Gardner, G. A. Gardner, and T. Geyikli, “The boundary forced MKdV equation,” J. Comput. Phys. 113(1), 5–12 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  4. D. H. Peregrine, “Calculations of the development of an undular bore,” J. Fluid Mech. 25(2), 321–330 (1996).

    Article  Google Scholar 

  5. A. M. Wazwaz, “The tanh and sine-cosine methods for a reliable treatment of the modified equal width equation and its variants,” Commun. Nonlinear Sci. Numer. Simul. 11(2), 148–160 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  6. S. I. Zaki, “Solitary wave interactions for the modified equal width equation,” Comput. Phys. Commun. 126(3), 219–231 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  7. S. I. Zaki, “A least-squares finite element scheme for the EW equation,” Comput. Methods Appl. Mech. Eng. 189(2), 587–594 (2000).

    Article  MATH  Google Scholar 

  8. J. Lu, “He’s variational method for the modified equal width wave equation,” Chaos Solitons Fractals 39(5), 2102–2109 (2007).

    Article  Google Scholar 

  9. S. T. Mohyud-Din, A. Yildirim, M. E. Berberler, and M. M. Hosseini, “Numerical solution of modified equal width wave equation,” World Appl. Sci. J. 8(7), 792–798 (2010).

    Google Scholar 

  10. A. Esen, “A numerical solution of the equal width wave equation by a lumped Galerkin method,” Appl. Math. Comput. 68(1), 270–282 (2004).

    Google Scholar 

  11. A. Esen, “A lumped Galerkin method for the numerical solution of the modified equal width wave equation using quadratic B splines,” Int. J. Comput. Math. 83(5–6), 449–459 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Esen and S. Kutluay, “Solitary wave solutions of the modified equal width wave equation,” Commun. Nonlinear Sci. Numer. Simul. 13(3), 1538–1546 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  13. B. Saka, “Algorithms for numerical solution of the modified equal width wave equation using collocation method,” Math. Comput. Model. 45(9–10), 1096–1117 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  14. T. Geyikli and S. B. G. Karakoç, “Different applications for the MEW equation using septic B-spline collocation method,” Appl. Math. 2(6), 739–749 (2011).

    Article  MathSciNet  Google Scholar 

  15. T. Geyikli and S. B. G. Karakoç, “Petrov-Galerkin method with cubic B-splines for solving the MEW equation,” Bull. Belgian Math. Soc. 19(2), 215–227 (2012).

    MATH  Google Scholar 

  16. S. B. G. Karakoç, “Numerical solutions of the modified equal width wave equation with finite elements method,” Ph.D. Thesis (Inonu University, December, 2011).

    Google Scholar 

  17. D. J. Evans and K. R. Raslan, “Solitary waves for the generalized equal width (GEW) equation,” Int. J. Comput. Math. 82(4), 445–455 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  18. R M. Prenter, Splines and Variational Methods (Wiley, New York, 1975).

    MATH  Google Scholar 

  19. L. R. T. Gardner, G. A. Gardner, F. A. Ayoup, and N. K. Amein, “Simulations of the EW undular bore,” Commun. Numer. Eng. 13(7), 583–592 (1997).

    Article  MATH  Google Scholar 

  20. P. J. Olver, “Euler operators and conservation laws of the BBM equation,” Math. Proc. Cambridge Philos. Soc. 85(1), 143–160 (1979).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Geyikli.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geyikli, T., Karakoc, S.B.G. Subdomain finite element method with quartic B-splines for the modified equal width wave equation. Comput. Math. and Math. Phys. 55, 410–421 (2015). https://doi.org/10.1134/S0965542515030070

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542515030070

Keywords

Navigation