Skip to main content
Log in

Flows of a polymer fluid in domain with impermeable boundaries

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Nonlinear boundary value problems modeling steady polymer flows in domains with impermeable solid walls are studied. The solvability of a nonhomogeneous boundary value problem for the equations governing a polymer flow in the case of an impermeable boundary is proved. The norms of solutions are estimated. The set of weak solutions is shown to be sequentially weakly closed. Additionally, explicit formulas are found for computing the solution of the boundary value problem describing the polymer flow induced by a stretching (shrinking) sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Pavlovskii, “On a theoretical description of weak aqueous polymer solutions,” Dokl. Akad. Nauk SSSR 200(4), 809–812 (1971).

    MathSciNet  Google Scholar 

  2. A. P. Oskolkov, “On the uniqueness and global solvability of boundary value problems for the equations of motion of aqueous polymer solutions,” Boundary Value Problems in Mathematical Physics and Related Issues of Function Theory, Vol. 7, Zap. Nauchn. Semin. LOMI 38, 98–136 (1973).

    MathSciNet  MATH  Google Scholar 

  3. A. P. Oskolkov, “On unsteady viscoelastic flows,” Boundary Value Problems in Mathematical Physics, Vol. 12, Tr.Mat. Inst. im. V.A. Steklova Akad. Nauk SSSR 159, 103–131 (1983).

    MathSciNet  MATH  Google Scholar 

  4. G. A. Sviridyuk and T. G. Sukacheva, “On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid,” Math. Notes 63(3), 388–395 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. O. Korpusov and A. G. Sveshnikov, “Blow-up of Oskolkov’s system of equations,” Sb. Math. 200(4), 549–572 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  6. E. S. Baranovskii, “Analysis of mathematical models describing Voigt flows with velocity components being linear functions of two spatial variables,” Vestn. Voronezh. Gos. Univ. Ser. Fiz. Mat., No. 1, 77–93 (2011).

    Google Scholar 

  7. O. A. Ladyzhenskaya, “On global unique solvability of two-dimensional problems for aqueous polymer solutions,” Boundary Value Problems in Mathematical Physics and Related Issues of Function Theory, Vol. 28, Zap. Nauchn. Semin. POMI 243, 138–153 (1997).

    Google Scholar 

  8. R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis (North-Holland, Amsterdam, 1979; Mir, Moscow, 1981).

    MATH  Google Scholar 

  9. J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéires (Dunod, Paris, 1969; Mir, Moscow, 1972).

    Google Scholar 

  10. G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems (Springer, New York, 2011).

    Book  Google Scholar 

  11. J.-L. Lions and E. Magenes, Nonhomogeneous Boundary Value Problems and Applications (Mir, Moscow, 1971; Springer-Verlag, Berlin, 1972).

    Google Scholar 

  12. H. Gajewski, K. Gröger, and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen (Akademie, Berlin, 1974; Mir, Moscow, 1978).

    MATH  Google Scholar 

  13. R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed. (Elsevier, Amsterdam, 2003).

    MATH  Google Scholar 

  14. B. C. Sakiadis, “Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow,” AIChE J. 7, 26–28 (1961).

    Article  Google Scholar 

  15. L. J. Crane, “Flow past a stretching plate,” Z. Angew Math. Phys. 21, 645–647 (1970).

    Article  Google Scholar 

  16. M. Sajid, “Homotopy analysis of stretching flows with partial slip,” Int. J. Nonlinear Sci. 8(3), 284–290 (2009).

    MathSciNet  MATH  Google Scholar 

  17. P. D. Weidman and E. Magyari, “Generalized Crane flow induced by continuous surfaces stretching with arbitrary velocities,” Acta Mech. 209(3–4), 353–362 (2010).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Baranovskii.

Additional information

Original Russian Text © E.S. Baranovskii, 2014, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2014, Vol. 54, No. 10, pp. 1648–1655.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranovskii, E.S. Flows of a polymer fluid in domain with impermeable boundaries. Comput. Math. and Math. Phys. 54, 1589–1596 (2014). https://doi.org/10.1134/S0965542514100042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542514100042

Keywords

Navigation