Skip to main content
Log in

Variational inequality solutions and finite stopping time for a class of shear-thinning flows

  • Published:
Annali di Matematica Pura ed Applicata (1923 -) Aims and scope Submit manuscript

Abstract

The aim of this paper is to study the existence of a finite stopping time for solutions in the form of variational inequality to fluid flows following a power law (or Ostwald–DeWaele law) in dimension \(N \in \{2,3\}\). We first establish the existence of solutions for generalized Newtonian flows, valid for viscous stress tensors associated with the usual laws such as Ostwald–DeWaele, Carreau–Yasuda, Herschel–Bulkley and Bingham, but also for cases where the viscosity coefficient satisfies a more atypical (logarithmic) form. To demonstrate the existence of such solutions, we proceed by applying a nonlinear Galerkin method with a double regularization on the viscosity coefficient. We then establish the existence of a finite stopping time for threshold fluids or shear-thinning power-law fluids, i.e. formally such that the viscous stress tensor is represented by a p-Laplacian for the symmetrized gradient for \(p \in [1,2)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbatiello, A., Feireisl, E.: On a class of generalized solutions to equations describing incompressible viscous fluids. Ann. Mat. Pura Appl. (4) 199(3), 1183–1195 (2020)

    Article  MathSciNet  Google Scholar 

  2. Abbatiello, A., Maremonti, P.: Existence of regular time-periodic solutions to shear-thinning fluids. J. Math. Fluid Mech. 21(2), 14 (2019)

    Article  MathSciNet  Google Scholar 

  3. Amann, H.: Stability of the rest state of a viscous incompressible fluid. Arch. Ration. Mech. Anal. 126(3), 231–242 (1994)

    Article  MathSciNet  Google Scholar 

  4. Barbu, V.: Controllability and Stabilization of Parabolic Equations. Progress in Nonlinear Differential Equations and their Applications. Subseries in Control, vol. 90. Birkhäuser, Cham (2018)

    Google Scholar 

  5. Becker, E.: Simple non-Newtonian fluid flows. Adv. Appl. Mech. 20, 177–226 (1980)

    Article  Google Scholar 

  6. Berselli, L.C., Diening, L., Ružička, M.: Existence of strong solutions for incompressible fluids with shear dependent viscosities. J. Math. Fluid Mech. 12(1), 101–132 (2010)

    Article  MathSciNet  Google Scholar 

  7. Berselli, L.C., Ružička, M.: Global regularity properties of steady shear thinning flows. J. Math. Anal. Appl. 450(2), 839–871 (2017)

    Article  MathSciNet  Google Scholar 

  8. Byron Bird, R., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics, 2nd edn. Wiley, New York (1987)

    Google Scholar 

  9. Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models. Applied Mathematical Sciences, vol. 83. Springer, New York (2013)

    Google Scholar 

  10. Burczak, J., Modena, S., Székelyhidi, L.: Non uniqueness of power-law flows. Commun. Math. Phys. 388, 199–243 (2021)

    Article  MathSciNet  Google Scholar 

  11. Chlebicka, I., Gwiazda, P., Świerczewska-Gwiazda, A., Wróblewska-Kamińska, A.: Partial Differential Equations in Anisotropic Musielak–Orlicz Spaces. Springer, Berlin (2021)

    Book  Google Scholar 

  12. Coussot, P.: Rhéophysique: La Matière Dans Tous Ses états. EDP Sciences, Les Ulis (2012)

    Google Scholar 

  13. Crispo, F., Grisanti, C.R.: On the existence, uniqueness and \(C^{1,\gamma }(\overline{\Omega })\cap W^{2,2}(\Omega )\) regularity for a class of shear-thinning fluids. J. Math. Fluid Mech. 10(4), 455–487 (2008)

    Article  MathSciNet  Google Scholar 

  14. Demengel, F., Demengel, G.: Espaces fonctionnels. Savoirs Actuels (Les Ulis). [Current Scholarship (Les Ulis)]. EDP Sciences, Les Ulis; CNRS Éditions, Paris. Utilisation dans la résolution des équations aux dérivées partielles. [Application to the solution of partial differential equations] (2007)

  15. Díaz, J.I., Glowinski, R., Guidoboni, G., Kim, T.: Qualitative properties and approximation of solutions of Bingham flows: on the stabilization for large time and the geometry of the support. Rev. Real Acad. Cienc. Exactas Fis. Nat. 104, 153–196 (2010)

    MathSciNet  Google Scholar 

  16. DiBenedetto, E.: Degenerate Parabolic Equations. Springer, New York (1993)

    Book  Google Scholar 

  17. Diening, L., Ružička, M.: Strong solutions for generalized Newtonian fluids. J. Math. Fluid Mech. 7(3), 413–450 (2005)

    Article  MathSciNet  Google Scholar 

  18. Diening, L., Ružička, M., Wolf, J.: Existence of weak solutions for unsteady motions of generalized Newtonian fluids. Ann. Sci. Norm. Super. Pisa Cl. Sci. (5) 9(1), 1–46 (2010)

    MathSciNet  Google Scholar 

  19. Duvaut, G., Lions, J.-L.: Les inéquations en mécanique et en physique. Travaux et Recherches Mathématiques, No. 21. Dunod, Paris (1972)

  20. Eberlein, H., Ružička, M.: Existence of weak solutions for unsteady motions of Herschel–Bulkley fluids. J. Math. Fluid Mech. 14(3), 485–500 (2012)

    Article  MathSciNet  Google Scholar 

  21. Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, vol. 19, 2nd edn. American Mathematical Society, Providence (2010)

    Google Scholar 

  22. Frehse, J., Málek, J., Steinhauer, M.: On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method. SIAM J. Math. Anal. 34(5), 1064–1083 (2003)

    Article  MathSciNet  Google Scholar 

  23. Frehse, J., Ružička, M.: Non-homogeneous generalized Newtonian fluids. Math. Z. 260(2), 355–375 (2008)

    Article  MathSciNet  Google Scholar 

  24. Friedman, A.: Optimal control for variational inequalities. SIAM J. Control. Optim. 24(3), 439–451 (1986)

    Article  MathSciNet  Google Scholar 

  25. Galdi, G.P., Rannacher, R., Robertson, A.M., Turek, S.: Hemodynamical Flows. Oberwolfach Seminars, vol. 37. Birkhäuser Verlag, Basel, 2008. Modeling, Analysis and Simulation, Lectures from the seminar held in Oberwolfach, November 20–26 (2005)

  26. Glowinski, R., Lions, J.-L., Trémolières, R.: Numerical Analysis of Variational Inequalities. Studies in Mathematics and its Applications, vol. 8. North-Holland Publishing Co., Amsterdam (1981). (Translated from the French)

    Book  Google Scholar 

  27. Ito, K., Kunisch, K.: Optimal control of parabolic variational inequalities. J. Math. Pures Appl. (9) 93(4), 329–360 (2010)

    Article  MathSciNet  Google Scholar 

  28. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Classics in Applied Mathematics, vol. 31. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000). (Reprint of the 1980 original)

    Book  Google Scholar 

  29. Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non linéaires. Dunod, Paris (1969)

    Google Scholar 

  30. Málek, J., Nečas, J., Rokyta, M., Ružička, M.: Weak and Measure-Valued Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical Computation, vol. 13. Chapman & Hall, London (1996)

    Book  Google Scholar 

  31. Málek, J., Nečas, J., Ružička, M.: On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case \(p\ge 2\). Adv. Differ. Equ. 6(3), 257–302 (2001)

    Google Scholar 

  32. Málek, J., Nečas, J., Rajagopal, K.R.: Global analysis of the flows of fluids with pressure-dependent viscosities. Arch. Ration. Mech. Anal. 165(3), 243–269 (2002)

    Article  MathSciNet  Google Scholar 

  33. Robertson, A.M., Sequeira, A., Owens, R.G.: Rheological models for blood. In: Cardiovascular Mathematics. MS &A Model. Simul. Appl., vol. 1, pp. 211–241. Springer, Milan (2009)

  34. Robinson, J.C., Rodrigo, J.L., Sadowski, W.: The Three-Dimensional Navier–Stokes Equations. Cambridge Studies in Advanced Mathematics. Classical theory, vol. 157. Cambridge University Press, Cambridge (2016)

  35. Saramito, P.: Complex Fluids. Mathématiques & Applications (Berlin) [Mathematics & Applications]. Modeling and Algorithms, vol. 79. Springer, Cham (2016)

  36. Strauss, M.J.: Variations of Korn’s and Sobolev’s equalities. In: Partial Differential Equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971), pp. 207–214. American Mathematical Society, Providence (1973)

  37. Wolf, J.: Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity. J. Math. Fluid Mech. 9(1), 104–138 (2007)

    Article  MathSciNet  Google Scholar 

  38. Zhou, J., Tan, Z.: Regularity of weak solutions to a class of nonlinear problem with non-standard growth conditions. J. Math. Phys. 61(9), 091509 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Lacour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Some examples of viscosity coefficients

In this section, we give some examples of functions F satisfying the conditions (C1)–(C4), most of which correspond to models of non-Newtonian coherent flows in the physical sense. This is the case for quasi-Newtonian fluids such as blood, threshold fluids such as mayonnaise, or more generally in the case of polymeric liquids.

  1. 1.

    Firstly, in order to describe power-law fluids (also known as Ostwald–DeWaele flows), we can consider functions \((F_{p})_{1< p < 2}\) given by: \(\begin{array}{l|l} &{}(0,+\infty ) \rightarrow (0,+\infty )\\ F_{p} :&{}\\ &{}t \longmapsto t^{p-2}. \end{array}\)

  2. 2.

    Considering functions \((F_{\mu ,p})_{\mu > 0, p \in [1,2)}\) of the form \(\begin{array}{l|l} &{}(0,+\infty ) \rightarrow (0,+\infty )\\ F_{\mu ,p} :&{}\\ &{}t \longmapsto (\mu + t^2)^{\frac{p-2}{2}} \end{array}\) leads to Carreau flows.

  3. 3.

    Cross fluids are obtained by choosing function \((F_{\gamma ,p})_{\gamma > 0, p \in [1,2)}\) given by: \(\begin{array}{l|l} &{}(0,+\infty ) \rightarrow (0,+\infty )\\ F_{\gamma ,p} :&{}\\ &{}t \longmapsto (\gamma + t^{2-p})^{-1}. \end{array}\)

  4. 4.

    Another possible choice is to take functions \((F_{p,\beta ,\gamma })\) given \(\begin{array}{l|l} &{}(0,+\infty ) \rightarrow (0,+\infty )\\ F_{p,\beta ,\gamma } :&{}\\ &{}t \longmapsto \left\{ \begin{array}{ll}t^{p-2}\text {log}(1+t)^{-\beta }&{}\quad \text {if} \; t \in (0,\gamma ] \\ {} &{} \\ \text {log}(1+\gamma )^{-\beta }t^{p-2}&{}\quad \text {if}\; t \in (\gamma ,+\infty )\end{array}\right. \end{array}\) for \(1< p < 2\) and some \(\beta ,\gamma >0\) with \(\gamma \) small enough.

Useful lemmas and energy estimates

For the sake of clarity, in this “Appendix”, we state and prove some useful results employed for the proof of Theorem 3.1. We begin this “Appendix” with some technical lemmas and, in its second part, we give a proof for Proposition 4.1.

1.1 Technical lemmas

Lemma B.1

Let X be a Banach space, and \(\gamma \ge \frac{1}{2}\). Then, the following inequality holds:

$$\begin{aligned} \forall (u,v) \in X^2,\; \Vert u + v \Vert ^{\gamma }_X \le 2^{\left( \gamma - \frac{1}{2}\right) }\left( \Vert u \Vert ^{\gamma }_X + \Vert v \Vert ^{\gamma }_X\right) . \end{aligned}$$

Proof

Using the convexity of \(t \mapsto t^{2(2-p)}\) and triangle’s inequality of the norm, we get:

$$\begin{aligned} \Vert u + v \Vert ^{2\gamma }_X = 2^{2\gamma }\left\Vert \frac{u+v}{2} \right\Vert ^{2\gamma }_X \le 2^{2\gamma -1}\left( \Vert u \Vert ^{2\gamma }_X + \Vert v \Vert ^{2\gamma }_X\right) . \end{aligned}$$

Applying now the well-known inequality: \(\forall (a,b) \in [0,+\infty )^2,\; \sqrt{a+b} \le \sqrt{a} + \sqrt{b}\), we get the result. \(\square \)

Lemma B.2

Consider that \(\varphi \in L^2_{\textrm{loc}}(\mathbb {R}_+,H_0^1(\Omega ))\), then there exists a constant \(C(\varepsilon ,\varphi ) > 0\) which goes to zero as \(\varepsilon \) does, such that the following inequality holds:

$$\begin{aligned} j_{\varepsilon }(\varphi ) + C(\varepsilon ,\varphi ) \ge j(\varphi ), \end{aligned}$$
(B.1)

where \(j_\varepsilon \) and j are defined by (2.2).

Proof

Recalling that the assumption (C3) states that \(t \mapsto tF(t)\) is increasing, we get:

$$\begin{aligned} j(\varphi )&{:}{=} \int _{\Omega }\int _0^{|D(\varphi )|} sF(s)\; ds\, dx\\&\le \int _{\Omega }\int _0^{\sqrt{\varepsilon }} sF(s)\; ds\, dx + \int _{\Omega }\int _{\sqrt{\varepsilon }}^{\sqrt{\varepsilon } + |D(\varphi )|} sF(s)\; ds\, dx\\&\le \varepsilon \sqrt{\varepsilon }F(\varepsilon )|\Omega |+ \int _{\Omega }\int _0^{\sqrt{2|D(\varphi ) |\sqrt{\varepsilon } + |D(\varphi )|^2}}sF(\sqrt{\varepsilon + s^2})\; ds\, dx\\&\le \underbrace{\varepsilon \sqrt{\varepsilon }F(\varepsilon )|\Omega |+ \int _{\Omega }\int _{|D(\varphi ) |}^{2^{\frac{1}{2}}\varepsilon ^{\frac{1}{4}}|D(\varphi ) |^{\frac{1}{2}} + |D(\varphi ) |}sF(\sqrt{\varepsilon + s^2})\; ds \,dx}_{{:}{=} C(\varepsilon ,\varphi )} + j_{\varepsilon }(\varphi ), \end{aligned}$$

which is the wished result. \(\square \)

Lemma B.3

Consider \(\Omega \) an open bounded subset of \({\mathbb {R}}^N\) with Lipschitz boundary, and a sequence \((w_n)_{n \in {\mathbb {N}}}\) such that there exists a positive constant \(C > 0\) satisfying \(\Vert w_n \Vert _{L^2_{\textrm{loc}}(\mathbb {R}_+,H_{0,\sigma }^1(\Omega )} \le C\). Then, for every fixed \(T > 0\) and for almost all \((t,x) \in (0,T) \times \Omega \), the following inequality holds:

$$\begin{aligned} \underset{n \rightarrow +\infty }{\underline{\textrm{lim}}}\; |D(w_n)(t,x) |\ge |D(w)(t,x) |. \end{aligned}$$

Proof

Firstly, let us recall that Eberlein-S̆mulyan theorem leads up to an extraction to \(w_n \rightharpoonup w\) in \(L^2_{\textrm{loc}}(\mathbb {R}_+,H_0^1(\Omega ))\) then, for every fixed \(T > 0\) and all Lebesgue points \(t_0 \in (0,T)\) and \(x_0 \in \Omega \), for all \(\delta > \) and \(R > 0\) small enough, we have \(w_n \rightharpoonup w\) in \(L^2((t_0 - \delta , t_0 + \delta ),H^1(B(x_0,R))\). Indeed, we have for all test function \(\varphi \):

$$\begin{aligned} \int _0^T\int _{\Omega }\nabla w_n \cdot \nabla \varphi \;dt\,dx \underset{n \rightarrow +\infty }{\longrightarrow } \int _0^T\int _{\Omega }\nabla w \cdot \nabla \varphi \;dt\,dx. \end{aligned}$$

Hence, we can take \(\varphi \), which belongs to \({\mathcal {C}}^{\infty }_0((t_0 - \delta ,t_0 + \delta ) \times B(x_0,R))\) (up to arguing by density thereafter), satisfying:

$$\begin{aligned} \nabla \varphi = \left\{ \begin{array}{ll} \nabla \psi &{} on (t_0 - \delta , t_0 + \delta ) \times B(x_0,R)\\ 0&{} on (0,T) \times \Omega \backslash (t_0 - \delta , t_0 + \delta ) \times B(x_0,R) \end{array}\right. \end{aligned}$$

and so this leads to:

$$\begin{aligned} \int _{t_0- \delta }^{t_0 + \delta }\int _{B(x_0,R)}\nabla w_n \cdot \nabla \psi \;dt\,dx \underset{n \rightarrow +\infty }{\longrightarrow }\ \int _{t_0 - \delta }^{t_0 + \delta }\int _{B(x_0,R)}\nabla w \cdot \nabla \psi \;dt\,dx. \end{aligned}$$

That is \(w_n\rightharpoonup w\) in \(L^2((t_0 - \delta , t_0 + \delta ),H^1(B(x_0,R)))\). Also, from Korn’s \(L^2\) equality and Lebesgue’s differentiation theorem over \((\delta ,R)\) after dividing by \(2\delta |B(x_0,R)|\), one gets that for every Lebesgue point \((t_0,x_0) \in (0,T) \times \Omega \):

$$\begin{aligned} |D(w_n(t_0,x_0)) |^2 \le C \end{aligned}$$

Following the same line of arguments, we find that:

$$\begin{aligned} \underset{n \rightarrow +\infty }{\underline{\textrm{lim}}}\;\int _{t_0 - \delta }^{t_0 + \delta }\int _{B(x_0,R)} |D(w_n) |^2\;dx \,dt \ge \int _{t_0 - \delta }^{t_0 + \delta }\int _{B(x_0,R)} |D(w) |^2\;dx \,dt. \end{aligned}$$

Dividing each side by \(2\delta |B(x_0,R) |\), we get:

then letting \((\delta ,R) \rightarrow (0,0)\) leads to the result, after applying a dominated convergence theorem. \(\square \)

1.2 Proof of Proposition 4.1

We now prove the energy estimates used for the convergence of the nonlinear Galerkin method appearing in the proof of Theorem 3.1.

Proof of Proposition 4.1

  1. 1.

    Setting \(\varphi = u_{m,\varepsilon }\) in the weak formulation, we get:

    $$\begin{aligned} \frac{1}{2} \frac{d}{dt}\Vert u_{m,\varepsilon } \Vert _{L^2}^2{} & {} + \int _{\Omega } |D(u_{m,\varepsilon }) |^2\; dx + \underbrace{\langle j_{\varepsilon }'(u_{m,\varepsilon }),u_{m,\varepsilon } \rangle }_{\ge 0}\\{} & {} - \underbrace{\int _{\Omega }(u_{m,\varepsilon }\cdot \nabla u_{m,\varepsilon })\cdot u_{m,\varepsilon }\; dx}_{=0} = \langle f,u_{m,\varepsilon } \rangle . \end{aligned}$$

    Using the Korn’s \(L^2\) equality for divergence free vectors fields, we get

    $$\begin{aligned} \frac{d}{dt}\Vert u_{m,\varepsilon }(t) \Vert _{L^2}^2 + \Vert u_{m,\varepsilon }(t) \Vert _{H_0^1}^2 \le 2\left\langle f(t),u_{m,\varepsilon }(t) \right\rangle \le 2\Vert f(t) \Vert _{H^{-1}}^2 + \frac{1}{2}\Vert u_{m,\varepsilon }(t) \Vert _{H_0^1}^2. \end{aligned}$$

    Then, integrating on (0, t) we get

    $$\begin{aligned} \Vert u_{m,\varepsilon }(t) \Vert ^2_{L^2} + \frac{1}{2}\int _0^t\Vert u_{m,\varepsilon } \Vert ^2_{H_0^1}\; dt \le 2\int _0^t \Vert f \Vert ^2_{H^{-1}}\; dt + \Vert u_0 \Vert _{L^2}^2. \end{aligned}$$
    (B.2)

    Indeed, we recall that \((P_m(u_0),w_i)_{L^2} = (u_0,P_mw_i)_{L^2} = (u_0,w_i)_{L^2}\), and the conclusion follows. From now on, we will omit to detail this last part which is usual.

  2. 2.

    We have, using Cauchy-Schwarz’s inequality and Korn’s equality in the divergence free \(L^2\) setting:

    $$\begin{aligned} \left\langle j_{\varepsilon }'(u_{m,\varepsilon }),\varphi \right\rangle&= \int _{\Omega }F\left( \sqrt{\varepsilon + |D(u_{m,\varepsilon }) |^2}\right) D(u_{m,\varepsilon }):D(\varphi )\; dx \nonumber \\&\le \frac{1}{\sqrt{2}}\left( \int _{\Omega }F\left( \sqrt{\varepsilon + |D(u_{m,\varepsilon }) |^2}\right) ^2|D(u_{m,\varepsilon }) |^2\; dx\right) ^{\frac{1}{2}} \Vert \varphi \Vert _{H_0^1}. \end{aligned}$$
    (B.3)

    From hypothesis (C4), setting \(A = \Omega \cap \{ |D(u_{m,\varepsilon }) |\le t_0 \}\) and B its complement in \(\Omega \), we obtain

    $$\begin{aligned} \int _{\Omega }F\left( \sqrt{\varepsilon + |D(u_{m,\varepsilon }) |^2}\right) ^2|D(u_{m,\varepsilon }) |^2\; dx&= \int _{A}F\left( \sqrt{\varepsilon + |D(u_{m,\varepsilon }) |^2}\right) ^2|D(u_{m,\varepsilon }) |^2\; dx\\&\quad + \int _{B}F\left( \sqrt{\varepsilon + |D(u_{m,\varepsilon }) |^2}\right) ^2|D(u_{m,\varepsilon }) |^2\; dx. \end{aligned}$$

    Let’s estimate these two integrals independently. By assumption (C3), we have that the application \(t \mapsto t^2F\left( \sqrt{\varepsilon + t^2}\right) ^2\) is non-decreasing, and we obtain directly:

    $$\begin{aligned} \int _{A}F\left( \sqrt{\varepsilon + |D(u_{m,\varepsilon }) |^2}\right) ^2|D(u_{m,\varepsilon }) |^2\; dx&\le F\left( \sqrt{\varepsilon + {t_0}^2}\right) ^2{t_0}^2|A |\\&\le F\left( \sqrt{\varepsilon + {t_0}^2}\right) ^2{t_0}^2|\Omega |\\&\le F\left( \sqrt{1+ {t_0}^2}\right) ^2\sqrt{1+ {t_0}^2}|\Omega |\\&\le C. \end{aligned}$$

    Then we have, using again (C4):

    $$\begin{aligned} \int _{B}F\left( \sqrt{\varepsilon + |D(u_{m,\varepsilon }) |^2}\right) ^2|D(u_{m,\varepsilon }) |^2\; dx&\le K\int _{B}\frac{|D(u_{m,\varepsilon }) |^2}{\left( \varepsilon + |D(u_{m,\varepsilon }) |^2\right) ^{2-p}}\; dx\\&\le K\int _{B}|D(u_{m,\varepsilon }) |^{2(p-1)}\; dx\\&\le K\int _B|\nabla u_{m,\varepsilon } |^{2(p-1)}\; dx\\&\le C\Vert u_{m,\varepsilon } \Vert ^{2(p-1)}_{H_0^1}, \end{aligned}$$

    where we used Jensen’s inequality in the concave setting with \(t \mapsto t^{p-1}\) in the last line. So, we obtain:

    $$\begin{aligned} \left( \int _{\Omega }F\left( \sqrt{\varepsilon + |D(u_{m,\varepsilon }) |^2}\right) ^2|D(u_{m,\varepsilon }) |^2\; dx\right) ^{\frac{1}{2}} \le \left( C + C\Vert u_{m,\varepsilon } \Vert ^{2(p-1)}_{H_0^1}\right) ^{\frac{1}{2}}. \end{aligned}$$
    (B.4)

    Thus, combining the inequality (B.3)–(B.4), using Lemma B.1 with \(\gamma = \frac{2}{N}\), and integrating in time leads to:

    $$\begin{aligned} \Vert j_{\varepsilon }'(u_{m,\varepsilon }) \Vert ^{\frac{4}{N}}_{L^{\frac{4}{N}}\left( (0,T),H^{-1}\right) } \le C + C\Vert u_{m,\varepsilon } \Vert ^{\frac{4(p-1)}{N}}_{L^{\frac{4(p-1)}{N}}((0,T),H_0^1)}. \end{aligned}$$

    Then, since \(0<\frac{4(p-1)}{N} \le 2\), we get, using the embedding \(L^2 \hookrightarrow L^{\frac{4(p-1)}{N}}\) and Lemma B.1 with \(X := H_0^1\), \(q = \frac{4(p-1)}{N}\) and \(p=2\) on \(\Vert u_{m,\varepsilon } \Vert _{L^{\frac{4(p-1)}{N}}((0,T),H_0^1)}\):

    $$\begin{aligned} \Vert j_{\varepsilon }'(u_{m,\varepsilon }) \Vert ^{\frac{4}{N}}_{L^{\frac{4}{N}}\left( (0,T),H^{-1}\right) } \le C + C\Vert u_{m,\varepsilon } \Vert ^{\frac{4(p-1)}{N}}_{L^{2}((0,T),H_0^1)}. \end{aligned}$$

    Using the first point of the proposition for \(t=T\), and since \(\frac{4(p-1)}{N} \ge 0\), we get:

    $$\begin{aligned} \Vert j_{\varepsilon }'(u_{m,\varepsilon }) \Vert ^{\frac{4}{N}}_{L^{\frac{4}{N}}\left( (0,T),H^{-1}\right) } \le C + C(\Vert f \Vert _{L^{2}((0,T),H^{-1})} + \Vert u_0 \Vert _{L^2})^{\frac{4(p-1)}{N}}. \end{aligned}$$

    Then, using the exponent \(\frac{N}{4}\) on both sides and applying once again Lemma B.1 with \(\gamma = \frac{N}{4}\) on the right-hand side in the inequality above leads us to:

    $$\begin{aligned} \Vert j_{\varepsilon }'(u_{m,\varepsilon }) \Vert _{L^{\frac{4}{N}}\left( (0,T),H^{-1}\right) } \le C +C(\Vert f \Vert _{L^{2}((0,T),H^{-1})} + \Vert u_0 \Vert _{L^2})^{p-1}. \end{aligned}$$

    This is the wished result.

  3. 3.

    From the weak formulation (4.4) we get

    $$\begin{aligned} \langle \partial _tu_{m,\varepsilon },\varphi \rangle{} & {} = - \int _{\Omega } D(u_{m,\varepsilon }):D(\varphi )\; dx - \langle j_{\varepsilon }'(u_{m,\varepsilon }),\varphi \rangle \nonumber \\{} & {} \quad \ + \int _{\Omega }(u_{m,\varepsilon } \cdot \nabla u_{m,\varepsilon }) \cdot \varphi \; dx + \langle f,\varphi \rangle . \end{aligned}$$
    (B.5)

    Let us point out that

    $$\begin{aligned} \int _{\Omega }D(u_{m,\varepsilon }):D(\varphi )\; dx = \frac{1}{2}\int _{\Omega }\nabla u_{m,\varepsilon }\cdot \nabla \varphi \; dx \le \frac{1}{2}\Vert u_{m,\varepsilon } \Vert _{H_0^1}\Vert \varphi \Vert _{H_0^1}. \end{aligned}$$
    (B.6)

    Also, from Gagliardo-Nirenberg’s inequality, we get the existence of a positive constant C which only depends on N and \(\Omega \) such that:

    $$\begin{aligned} \Vert u \Vert _{L^4}^2 \le C\Vert \nabla u\Vert _{L^2}^{\frac{N}{2}}\Vert u \Vert _{L^2}^{\frac{4-N}{2}}. \end{aligned}$$
    (B.7)

    The latter leads, as for the Navier–Stokes equations:

    $$\begin{aligned} \left|\int _{\Omega }(u_{m,\varepsilon }.\nabla u_{m,\varepsilon }).\varphi \; dx \right|\le C \Vert u_{m,\varepsilon } \Vert _{L^2}^{\frac{4-N}{2}}\Vert u_{m,\varepsilon } \Vert _{H_0^1}^{\frac{N}{2}}\Vert \varphi \Vert _{H_0^1}. \end{aligned}$$

    So, putting (B.6)–() and the second estimate of the Proposition 4.1 in (B.5), we obtain

    $$\begin{aligned} \langle \partial _tu_{m,\varepsilon },\varphi \rangle \le&\; \frac{1}{2}\Vert u_{m,\varepsilon } \Vert _{H_0^1}\Vert \varphi \Vert _{H_0^1} + \Vert j_{\varepsilon }'(u_{m,\varepsilon }) \Vert _{H^{-1}}\Vert \varphi \Vert _{H_0^1} +C \Vert u_{m,\varepsilon } \Vert _{L^2}^{\frac{4-N}{2}}\Vert u_{m,\varepsilon } \Vert _{H_0^1}^{\frac{N}{2}}\Vert \varphi \Vert _{H_0^1}\\&+ \Vert f \Vert _{H^{-1}}\Vert \varphi \Vert _{H_0^1}, \end{aligned}$$

    and therefore

    $$\begin{aligned} \Vert \partial _tu_{m,\varepsilon }(t) \Vert _{H^{-1}} \le \; \frac{1}{2}\Vert u_{m,\varepsilon } \Vert _{H_0^1} + \Vert j_{\varepsilon }'(u_{m,\varepsilon }) \Vert _{H^{-1}} + C \Vert u_{m,\varepsilon } \Vert _{L^2}^{\frac{4-N}{2}}\Vert u_{m,\varepsilon } \Vert _{H_0^1}^{\frac{N}{2}}+ \Vert f \Vert _{H^{-1}}. \end{aligned}$$

    Now, using the following convexity inequality

    $$\begin{aligned} \forall k \in {\mathbb {N}},\; \forall (x_i)_{1 \le i \le k} \in (0,+\infty )^k,\; \exists C > 0,\; \left( \sum _{i=1}^kx_i\right) ^{\frac{4}{N}} \le C\sum _{i=1}^k x_i^{\frac{4}{N}} \end{aligned}$$

    we get, after integrating in time an using the the embedding \(L^2(\Omega ) \hookrightarrow L^{\frac{4}{N}}(\Omega )\) (which is valid since \(N \in \{2,3\}\), so that we have \(\frac{4}{N} \le 2\)):

    $$\begin{aligned} \Vert \partial _tu_{m,\varepsilon } \Vert _{L^{\frac{4}{N}}((0,T),H^{-1})}^{\frac{4}{N}}&\; \le C\left( \Vert u_{m,\varepsilon } \Vert _{L^2((0,T),H_0^1)}^{\frac{4}{N}} + \Vert j_{\varepsilon }'(u_{m,\varepsilon }) \Vert _{L^{\frac{4}{N}}((0,T),H^{-1})}^{\frac{4}{N}}\right) \\&\quad + C \Vert u_{m,\varepsilon } \Vert _{L^{\infty }((0,T),L^2)}^{\frac{8-2N}{N}}\Vert u_{m,\varepsilon } \Vert _{L^2((0,T),H_0^1)}^{\frac{4}{N}}+ C\Vert f \Vert _{L^2((0,T),H^{-1})}^{\frac{4}{N}}. \end{aligned}$$

    Using the previously given convexity inequality and the first and second points of the proposition we obtain the desired result.

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chupin, L., Cîndea, N. & Lacour, G. Variational inequality solutions and finite stopping time for a class of shear-thinning flows. Annali di Matematica (2024). https://doi.org/10.1007/s10231-024-01457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10231-024-01457-9

Keywords

Mathematics Subject Classification

Navigation