Skip to main content
Log in

Correlations between the Lattice Parameters and the Magnetic Properties of the Ferromagnetic Metals Subjected to Severe Plastic Deformation in a Bridgman Chamber

  • STRUCTURE AND PROPERTIES OF THE DEFORMED STATE
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The effect of severe plastic deformation by torsion in a Bridgman chamber on the lattice parameters, the specific saturation magnetization, and the coercive force of three ferromagnetic metals, namely, nickel, cobalt, and iron, is studied. The torsion deformation combined with a high quasi-hydrostatic pressure is shown to change the specific saturation magnetization of the metals along with their lattice parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. M. Glezer, “Creation principles of new-generation multifunctional structural materials,” Physics-Uspekhi 55 (5), 522–529 (2012).

    Article  Google Scholar 

  2. A. P. Zhilyaev and T. G. Langdon, “Using high-pressure torsion for metal processing: fundamentals and applications,” Prog. Mater. Sci. 53, 893–979 (2008).

    Article  CAS  Google Scholar 

  3. I. P. Bazarov, Thermodynamics (Vysshaya Shkola, Moscow, 1991).

    Google Scholar 

  4. O. P. Zhukov, V. P. Filippova, A. A. Tomchuk, K. V. Neumoin, S. V. Basov, A. M. Glezer, Yu. A. Perlovich, O. A. Krymskaya, and L. F. Muradimova, “Effect of high-pressure torsion on the lattice parameters of α-Fe and α-Fe-based solid solutions,” Russ. Metall. (Metally), (10), 941–946 (2018).

  5. A. M. Glezer, A. A. Tomchuk, I. V. Shchetinin, and R. N. Rostovtsev, “Features of relaxation processes in FeNi alloy upon megaplastic deformation in a Bridgman chamber,” Bull. Russ. Acad. Sci. 80 (8), 1027–1032 (2016).

    Article  CAS  Google Scholar 

  6. R. Cardias, A. B. Klautau, Y. O. Kvashnin, A. Szilva, A. Bergman, I. Di Marco, L. Nordstrom, O. Eriksson, M. I. Katsnelson, and A. I. Lichtenstein, “Erratum: The Bethe–Slater curve revisited; new insights from electronic structure theory,” Sci. Rep. 7 (1), art. 14878 (2017).

    Article  CAS  Google Scholar 

  7. A. M. Glezer, A. G. Savchenko, V. V. Korovushkin, I. V. Shchetinin, and A. A. Tomchuk, “Effect of megaplastic deformation on the magnetic properties of FeNi alloy,” Bull. Russ. Acad. Sci. 80 (8), 1021–1026 (2016).

    Article  CAS  Google Scholar 

  8. A. M. Glezer, M. A. Libman, I. A. Timshin, I. V. Shchetinin, A. G. Savchenko, and A. A. Tomchuk, “Effect of increasing saturation magnetization of the Fe3Al superstructure under the action of severe plastic deformation,” Pis’ma Zh. Exp. Teor. Fiz. 108 (1, 2), 52–56 (2018).

  9. M. Shiga, “Correlation between lattice constant and magnetic moment in 3d transition metal alloys,” AIP Conf. Proc., No. 18, 463–477 (1974).

  10. A. M. Glezer, M. R. Plotnikova, A. V. Shalimova, and N. S. Perov, “Severe plastic deformation of amorphous alloys: I. Structure and mechanical properties,” Bull. Russ. Acad. Sci. Phys. 73 (9), 1237–1239 (2009).

    Google Scholar 

  11. G. Abrosimova, A. Aronin, D. Matveev, and E. Pershina, “Nanocrystal formation, structure, and magnetic properties of Fe–Si–B amorphous alloy deformation,” Mater. Lett. 97, 15–17 (2013).

    Article  CAS  Google Scholar 

  12. V. K. Grigorovich, Hardness and Microhardness of Metals (Nauka, Moscow, 1976).

    Google Scholar 

  13. P. J. Blau, Microindentation Techniques in Materials Science and Engineering (ASTM, Philadelphia, 1984).

    Google Scholar 

  14. A. P. Zhilyaev, S. Lee, G. V. Nurislamova, R. Z. Valiev, and T. G. Langdon, “Microhardness and microstructural evolution in pure nickel during high-pressure torsion,” Scr. Mater. 44 (12), 2753–2758 (2001).

    Article  CAS  Google Scholar 

  15. A. P. Zhilyaev, K. Oh-Ishi, T. G. Langdon, and T. R. McNelley, “Microstructural evolution in commercial purity aluminium during high-pressure torsion,” Mater. Sci. Eng. A 410–411, 277–280 (2005).

  16. A. M. Glezer, A. A. Tomchuk, R. V. Sundeev, and M. V. Gorshenkov, “‘Two-phase’ model of the structure formed upon sever plastic deformation in α-Fe and FeNi alloy,” 161, 360–364 (2015).

  17. V. A. Pozdnyakov and A. M. Glezer, “Possible ways of evolution of defect structure in the course of severe plastic deformation: role of relaxation mechanisms,” Izv. Ross. Akad. Nauk, Ser. Fiz. 68 (10), 1449–1455 (2004).

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project. no. 19-02-00804A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tomchuk.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomchuk, A.A., Muradimova, L.F., Zheleznyi, M.V. et al. Correlations between the Lattice Parameters and the Magnetic Properties of the Ferromagnetic Metals Subjected to Severe Plastic Deformation in a Bridgman Chamber. Russ. Metall. 2021, 418–425 (2021). https://doi.org/10.1134/S0036029521040340

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029521040340

Keywords:

Navigation