Skip to main content
Log in

Magnetic, Optical Properties, and Photocatalytic Activity of the ZnFe2O4 Nanoparticles for the Degradation of the RhB Dye in Wastewater: Effects of Metal Salt and Surface Morphology

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Zinc ferrite nanoparticles are synthesized by a microwave assisted polyacrylamide gel route. The influence of different Zn salts includes zinc nitrate, zinc sulfate, zinc chloride, zinc acetate on the crystal structure, surface morphologies, optical properties, magnetic properties, and photocatalytic activity of the ZnFe2O4 nanoparticles were systematically studied. The ZnFe2O4 nanoparticles prepared using zinc nitrate have cubic spinel structure and exhibited good size uniformity and regularity. The absorption edge of ZnFe2O4 nanoparticles prepared using zinc nitrate as Zn salt shifted to a higher energy compared with that of ZnFe2O4 nanoparticles prepared by other Zn salts. The magnetic susceptibility indicates that the blocking temperature (TB) decreases from 94 to 35 K with Zn salt change from zinc nitrate to zinc sulfate due to the size effect. Interesting, zinc nitrate is used as Zn salt improves the photocatalytic activity for the degradation of rhodamine B (RhB) dye wastewater of ZnFe2O4 nanoparticles significantly due to introduced the surface species of OH to the ZnFe2O4 nanopartciles. The recycling experiment indicates that the ZnFe2O4 nanopartciles have a high stability. The photocatalytic mechanism of ZnFe2O4 nanopartciles have been systematically studied on the basis of the photocatalytic experiment and electrochemical test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. R. C. Che, L. M. Peng, X. F. Duan, Q. Che, and X. L. Liang, Adv. Mater. 16, 401 (2004).

    Article  CAS  Google Scholar 

  2. A. Moser, K. Takano, D. T. Margulies, M. Albrecht, Y. Sonobe, Y. Ikeda, S. Sun, and E. E. Fullerton, J. Phys. D: Appl. Phys. 35, R157 (2002).

    Article  CAS  Google Scholar 

  3. J. M. Bai and J. P. Wang, Appl. Phys. Lett. 87, 152502 (2005).

    Article  CAS  Google Scholar 

  4. S. W. Cao, Y. J. Zhu, G. F. Cheng, and Y. H. Huang, J. Hazard. Mater. 171, 431 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. K. Raj and R. Moskowitz, J. Magn. Magn. Mater. 85, 233 (1990).

    Article  CAS  Google Scholar 

  6. R. Dom, A. S. Chary, R. Subasri, N. Y. Hebalkar, and P. H. Borse, Int. J. Energ. Res. 39, 1378 (2015).

    Article  CAS  Google Scholar 

  7. T. Tabari, D. Singh, and S. S. Jamali, J. Environ. Chem. Eng. 5, 931 (2017).

    Article  CAS  Google Scholar 

  8. F. Mueller, D. Bresser, E. Paillard, M. Winter, and S. Passerini, J. Power Sources 236, 87 (2013).

    Article  CAS  Google Scholar 

  9. J. Li, A. R. Wang, Y. Q. Lin, X. D. Liu, J. Fu, and L. H. Lin, J. Magn. Magn. Mater. 330, 96 (2013).

    Article  CAS  Google Scholar 

  10. F. Li, Y. Q. Qian, and A. Stein, Chem. Mater. 22, 3226 (2010).

    Article  CAS  Google Scholar 

  11. V. Blanco-Gutierrez, E. Urones-Garrote, M. J. Torralvo-Fernandez, and R. Saez-Puche, Chem. Mater. 22, 6130 (2010).

    Article  CAS  Google Scholar 

  12. C. W. Yao, Q. S. Zeng, G. F. Goya, T. Torres, J. F. Liu, H. P. Wu, M. Y. Ge, Y. W. Zeng, Y. W. Wang, and J. Z. Jiang, J. Phys. Chem. C 111, 12274 (2007).

    Article  CAS  Google Scholar 

  13. J. Feng, Z. Zhang, M. Gao, M. Gu, J. Wang, W. Zeng, Y. Z. Lv, Y. M. Ren, and Z. Fan, Mater. Chem. Phys. 223, 758 (2019).

    Article  CAS  Google Scholar 

  14. F. Li, H. Wang, L. Wang, and J. Wang, J. Magn. Magn. Mater. 309, 295 (2007).

    Article  CAS  Google Scholar 

  15. U. Kurtan, H. Erdemi, A. Baykal, and H. Güngünes, Ceram. Int. 42, 13350 (2016).

    Article  CAS  Google Scholar 

  16. P. A. Vinosha, L. A. Mely, J. E. Jeronsia, S. Krishnan, and S. J. Das, Optik 134, 99 (2017).

    Article  CAS  Google Scholar 

  17. A. F. S. Abu-Hani, S. T. Mahmoud, F. Awwad, and A. I. Ayesh, Sens. Actuators, B 241, 1179 (2017).

    Article  CAS  Google Scholar 

  18. C. Wang, Y. Li, Y. Ruan, J. Jiang, and Q. H. Wu, Mater. Today Energ. 3, 1 (2017).

    Article  Google Scholar 

  19. M. Amir, H. Gungunes, A. Baykal, M. A. Almessiere, H. Sözeri, I. Ercan, M. Sertkol, S. Asiri, and A. Manikandan, J. Supercond. Nov. Magn. 31, 3347 (2018).

    Article  CAS  Google Scholar 

  20. Z. Xing, Z. Ju, J. Yang, H. Xu, and Y. Qian, Nano Res. 5, 477 (2012).

    Article  CAS  Google Scholar 

  21. Y. Köseoglu, A. Baykal, M. S. Toprak, F. Gözüak, A. C. Basaran, and B. Aktas, J. Alloys Compd. 462, 209 (2008).

    Article  CAS  Google Scholar 

  22. S. F. Wang, X. T. Zu, G. Z. Sun, D. M. Li, C. D. He, X. Xiang, W. Liu, S. B. Han, and S. Li, Ceram. Int. 42, 19133 (2016).

    Article  CAS  Google Scholar 

  23. S. F. Wang, Q. Li, X. T. Zu, X. Xiang, W. Liu, and S. Li, J. Magn. Magn. Mater. 419, 464 (2016).

    Article  CAS  Google Scholar 

  24. D. F. Zhao, H. Yang, R. S. Li, J. Y. Ma, and W. J. Feng, Mater. Res. Innov. 18, 519 (2014).

    Article  CAS  Google Scholar 

  25. W. P. Wang, H. Yang, T. Xian, and J. L. Jiang, Mater. Trans. 53, 1586 (2012).

    Article  CAS  Google Scholar 

  26. F. Hu, S. Zhao, and X. Yin, J. Mater. Sci. Mater. Electron. 29, 16747 (2018).

    Article  CAS  Google Scholar 

  27. A. Bigham, F. Foroughi, M. Motamedi, and M. Rafienia, Ceram. Int. 44, 11798 (2018).

    Article  CAS  Google Scholar 

  28. M. L. Aparna, A. N. Grace, P. Sathyanarayanan, and N. K. Sahu, J. Alloys Compd. 745, 385 (2018).

    Article  CAS  Google Scholar 

  29. X. F. She and Z. Zhang, Nanoscale Res. Lett. 12, 211 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Z. W. Wang, D. Schiferl, Y. S. Zhao, and C. O’Neill, J. Phys. Chem. Solids 64, 2517 (2003).

    Article  CAS  Google Scholar 

  31. Z. Cvejic, S. Rakic, A. Kremenovic, B. Antic, C. Jovalekic, and P. Colomban, Solid State Sci. 8, 908 (2006).

    Article  CAS  Google Scholar 

  32. S. Urcia-Romero, O. Perales-Pérez, and G. Gutiérrez, J. Appl. Phys. 107, 09A508 (2010).

  33. G. Shemer, E. Tirosh, T. Livneh, and G. Markovich, J. Phys. Chem. C 111, 14334 (2007).

    Article  CAS  Google Scholar 

  34. W. Liu, Y. Chan, J. Cai, C. Leung, C. Mak, K. Wong, F. Zhang, X. Wu, and X. D. Qi, J. Appl. Phys. 112, 104306 (2012).

    Article  CAS  Google Scholar 

  35. X. Zhao, W. Wang, Y. Zhang, S. Wu, F. Li, and J. P. Liu, Chem. Eng. J. 250, 164 (2014).

    Article  CAS  Google Scholar 

  36. N. Romcevic, R. Kostic, M. Romcevic, B. Hadzic, I. Kuryliszyn-Kudelska, W. Dobrowolski, and D. Sibera, Acta Phys. Polon. A 114, 1323 (2008).

    Article  CAS  Google Scholar 

  37. A. N. Ay, B. Zümreoglu-Karan, A. Temel, and V. Rives, Inorg. Chem. 48, 8871 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. A. Silambarasu, A. Manikandan, and K. Balakrishnan, J. Supercond. Nov. Magn. 30, 2631 (2017).

    Article  CAS  Google Scholar 

  39. P. Jeevanandam, Y. Koltypin, and A. Gedanken, Mater. Sci. Eng. B 90, 125 (2002).

    Article  Google Scholar 

  40. S. H. Xu, D. L. Feng, and W. F. Shanggua, J. Phys. Chem. C 113, 2463 (2009).

    Article  CAS  Google Scholar 

  41. G. L. Fan, Z. J. Gu, L. Yang, and F. Li, Chem. Eng. J. 155, 534 (2009).

    Article  CAS  Google Scholar 

  42. X. Y. Li, Y. Hou, Q. D. Zhao, and L. Z. Wang, J. Colloid Interf. Sci. 358, 102 (2011).

    Article  CAS  Google Scholar 

  43. K. Woo, H. J. Lee, P. Ahn and Y. S. Park, Adv. Mater. 15, 1761 (2010).

    Article  CAS  Google Scholar 

  44. Y. S. Wang, A. Muramatsu, and T. Sugimoto, Colloid Surf. A 134, 281 (1998).

    Article  CAS  Google Scholar 

  45. A. Kaschner, U. Haboeck, M. Strassburg, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, Appl. Phys. Lett. 80, 1909 (2002).

    Article  CAS  Google Scholar 

  46. G. Xiong, U. Pal, J. G. Serrano, K. B. Ucer, and R. T. Williams, Phys. Status Solidi C 3, 3577 (2006).

    Article  CAS  Google Scholar 

  47. X. Guo, H. J. Zhu, M. S. Si, C. J. Jiang, D. S. Xue, Z. H. Zhang, and Q. Li, J. Phys. Chem. C 119, 30145 (2014).

    Article  CAS  Google Scholar 

  48. G. K. Zhang, M. Li, S. J. Yu, S. M. Zhang, B. B. Huang, and J. G. Yu, J. Colloid Interface Sci. 345, 467 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Z. H. Yuan, W. You, J. H. Jia, and L. Zhang, Chin. Phys. Lett. 15, 535 (1998).

    Article  CAS  Google Scholar 

  50. L. J. Han, X. Zhou, L. N. Wan, Y. F. Deng, and S. Z. Zhan, J. Environ. Chem. Eng. 2, 123 (2014).

    Article  CAS  Google Scholar 

  51. N. Kislov, S. S. Srinivasan, Yu. Emirov, and E. K. Stefanakos, Mater. Sci. Eng. B 153, 70 (2008).

    Article  CAS  Google Scholar 

  52. H. Fu, S. Zhang, T. Xu, Y. Zhu, and J. Chen, Environ. Sci. Technol. 42, 2085 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Z. Cui, H. Yang, and X. Zhao, Mater. Sci. Eng. B 229, 160 (2018).

    Article  CAS  Google Scholar 

  54. X. X. Wang, Y. Li, M. C. Liu, and L. B. Kong, Ionics 24, 363 (2018).

    Article  CAS  Google Scholar 

  55. X. Zhao, H. Yang, Z. Cui, R. Li, and W. Feng, Mater. Technol. 32, 870 (2017).

    Article  CAS  Google Scholar 

  56. S. Horikoshi, A. Saitou, H. Hidaka, and N. Serpone, Environ. Sci. Technol. 37, 5813 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Z. X. Chen, D. Z. Li, W. J. Zhang, Y. Shao, T. W. Chen, M. Sun, and X. Z. Fu, J. Phys. Chem. C 113, 4433 (2009).

    Article  CAS  Google Scholar 

  58. S. R. Morrison, Electrochemistry at Semiconductor and Oxidized Metal Electrodes (Plenum, New York, NY, 1980).

    Book  Google Scholar 

  59. R. Dom, R. Subasri, K. Radha, and P. H. Borse, Solid State Commun. 151, 470 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by National Natural Science Foundation of China (51678409).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfu Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You Wang, Yang, L., Zhang, Y. et al. Magnetic, Optical Properties, and Photocatalytic Activity of the ZnFe2O4 Nanoparticles for the Degradation of the RhB Dye in Wastewater: Effects of Metal Salt and Surface Morphology. Russ. J. Phys. Chem. 93, 2771–2781 (2019). https://doi.org/10.1134/S0036024419130314

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419130314

Keywords:

Navigation