Skip to main content
Log in

Spark Plasma Sintering-Reactive Synthesis of SiC and SiC–HfB2 Ceramics Based on Natural Renewable Raw Materials

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

An original method for producing a ceramic material based on silicon carbide (SiC) and its composite with the addition of hafnium diboride (SiC–HfB2) from organic raw materials of natural origin is presented. The originality of the method is in the use of the spark plasma sintering-reactive synthesis of a powder mixture based on the product of thermal oxidative treatment of rice husk (RH). The formation of a ceramic product based on SiC occurs through an in situ reaction in the SiO2–C system constituting the basis of RH, which is initiated by spark plasma heating. The phase formation and structure formation of ceramics have been studied by X-ray diffraction analysis, Raman spectroscopy, and scanning electron microscopy; in addition, the physical and mechanical properties of ceramic materials have been reported. The influence of the SiC : HfB2 ratio on the density, hardness, and homogeneity in the microstructural organization of the ceramic composite SiC–HfB2 has been demonstrated. The unconventional method represents an obvious prospect for an efficient and cost-effective approach to obtaining high-quality SiC ceramics and its high-temperature SiC–HfB2 composites for a wide range of practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. J.-H. Eom, Y.-W. Kim, and S. Raju, Integr. Med. Res. 1, 220 (2013). https://doi.org/10.1016/j.jascer.2013.07.003

    Article  Google Scholar 

  2. E. P. Simonenko, A. V. Derbenev, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 62, (2017). https://doi.org/10.1134/S0036023617070221

  3. E. P. Simonenko, N. P. Simonenko, M. A. Zharkov, et al., J. Mater. Sci. 50, 733 (2014). https://doi.org/10.1007/s10853-014-8633-1

    Article  CAS  Google Scholar 

  4. D. Das, K. Nijhuma, A. M. Gabriel, et al., J. Eur. Ceram. Soc. 40, 2163 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.01.034

    Article  CAS  Google Scholar 

  5. N. D. Shcherban, J. Ind. Eng. Chem. 50 (2016), 15 (2017). https://doi.org/10.1016/j.jiec.2017.02.002

  6. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 63, 1772 (2018). https://doi.org/10.1134/S003602361814005X

    Article  CAS  Google Scholar 

  7. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 64, 1697 (2019). https://doi.org/10.1134/S0036023619140079

    Article  CAS  Google Scholar 

  8. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 64, 1681 (2019). https://doi.org/10.1134/S0036023619130084

    Article  CAS  Google Scholar 

  9. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 65, 606 (2020). https://doi.org/10.1134/S0036023620040191

    Article  CAS  Google Scholar 

  10. T. Koyanagi, Y. Katoh, T. Nozawa, et al., J. Nucl. Mater. 511, 544 (2018). https://doi.org/10.1016/j.jnucmat.2018.06.017

    Article  CAS  Google Scholar 

  11. Y. Katoh, L. L. Snead, I. Szlufarska, et al., Curr. Opin. Solid State Mater. Sci. 16, 143 (2012). https://doi.org/10.1016/j.cossms.2012.03.005

    Article  CAS  Google Scholar 

  12. Y. Katoh and L. L. Snead, J. Nucl. Mater. 526, 151849 (2019). https://doi.org/10.1016/j.jnucmat.2019.151849

    Article  CAS  Google Scholar 

  13. M. Tokita, in Handbook of Advanced Ceramic Materials, Applied Processes and Properties, Ed. by S. Somiya, 2nd ed. (Elsevier, 2013). https://doi.org/10.1016/B978-012654640-8/50007-9

  14. E. K. Papynov, O. O. Shichalin, V. Y. Mayorov, et al., Nanotechnol. Russ. 12, 49 (2017). https://doi.org/10.1134/S1995078017010086

    Article  CAS  Google Scholar 

  15. Z.-Y. Hu, Z.-H. Zhang, X.-W. Cheng, et al., Mater. Des. 191, 108662 (2020). https://doi.org/10.1016/j.matdes.2020.108662

    Article  CAS  Google Scholar 

  16. T. L. Simonenko, M. V. Kalinina, N. P. Simonenko, et al., Int. J. Hydrogen Energy 44, 20345 (2019). https://doi.org/10.1016/j.ijhydene.2019.05.231

    Article  CAS  Google Scholar 

  17. A. P. Kreshkov, Foundations of Analytical Chemistry, Physicochemical (Instrumental) Methods of Analysis (Khimiya, Moscow, 1970) [in Russian].

    Google Scholar 

  18. T. L. Simonenko, M. V. Kalinina, N. P. Simonenko, et al., Ceram. Int. 44, 19879 (2018). https://doi.org/10.1016/j.ceramint.2018.07.249

    Article  CAS  Google Scholar 

  19. E. K. Papynov, O. O. Shichalin, M. A. Medkov, et al., Glas. Phys. Chem. 44, 632 (2018). https://doi.org/10.1134/S1087659618060159

    Article  CAS  Google Scholar 

  20. V. G. Sevast’yanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 58, 1269 (2013). https://doi.org/10.1134/S003602361311017X

    Article  CAS  Google Scholar 

  21. V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 59, 1361 (2014).

    Article  CAS  Google Scholar 

  22. V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 59, 1298 (2014). https://doi.org/10.1134/S0036023614110217

    Article  CAS  Google Scholar 

  23. E. P. Simonenko, A. N. Gordeev, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 61, 1203 (2016). https://doi.org/10.1134/S003602361610017X

    Article  CAS  Google Scholar 

  24. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 63, 421 (2018). https://doi.org/10.1134/S0036023618040186

    Article  CAS  Google Scholar 

  25. D. V. Dudina and A. K. Mukherjee, J. Nanomater. 2013, 625218 (2013). https://doi.org/10.1155/2013/625218

  26. E. K. Papynov, O. O. Shichalin, I. Y. Buravlev, et al., Russ. J. Inorg. Chem. 65, 263 (2020). https://doi.org/10.1134/S0036023620020138

    Article  CAS  Google Scholar 

  27. G. Shao, X. Zhao, H. Wang, et al., Int. J. Refract. Met. Hard Mater. 60, 104 (2016). https://doi.org/10.1016/j.ijrmhm.2016.07.011

    Article  CAS  Google Scholar 

  28. Q. Guo, J. Li, Q. Shen, et al., Mater. Sci. Eng., A 558, 186 (2012). https://doi.org/10.1016/j.msea.2012.07.109

    Article  CAS  Google Scholar 

  29. E. K. Papynov, O. O. Shichalin, I. Y. Buravlev, et al., Vacuum 180, 109628 (2020). https://doi.org/10.1016/j.vacuum.2020.109628

    Article  CAS  Google Scholar 

  30. L. Wang, J. Zhang, and W. Jiang, Int. J. Refract. Met. Hard Mater. 39, 103 (2013). https://doi.org/10.1016/j.ijrmhm.2013.01.017

    Article  CAS  Google Scholar 

  31. E. K. Papynov, O. O. Shichalin, Y. E. Skurikhina, et al., Ceram. Int. 45, 13838 (2019). https://doi.org/10.1016/j.ceramint.2019.04.081

    Article  CAS  Google Scholar 

  32. R. Licheri, C. Musa, R. Orru, et al., J. Alloys Compd. 663, 351 (2016). https://doi.org/10.1016/j.jallcom.2015.12.096

    Article  CAS  Google Scholar 

  33. E. P. Simonenko, N. P. Simonenko, E. K. Papynov, et al., J. Sol-Gel Sci. Technol. 82, 748 (2017). https://doi.org/10.1007/s10971-017-4367-2

    Article  CAS  Google Scholar 

  34. V. Rodriguez-Lugo, E. Rubio, I. Gomez, et al., Int. J. Environ. Pollut. 18, 378 (2002). https://doi.org/10.1504/IJEP.2002.003734

    Article  CAS  Google Scholar 

  35. L. Sun and K. Gong, Ind. Eng. Chem. Res. 40, 5861 (2001). https://doi.org/10.1021/ie010284b

    Article  CAS  Google Scholar 

  36. S. K. S. Hossain, L. Mathur, and P. K. Roy, J. Asian Ceram. Soc. 6, 299 (2018). https://doi.org/10.1080/21870764.2018.1539210

    Article  Google Scholar 

  37. T. Ya. Kosolapova, T. V. Andreeva, T. B. Bartintskaya, et al., Refractory Nonmetal Compounds (Metallurgiya, Moscow, 1985) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This research has been performed with the use of facilities of the interdisciplinary center for collective use in the field of nanotechnology and new functional materials (FEFU, Vladivostok).

Funding

The study was carried out as part of the State assignment of the Ministry of Science and Higher Education of the Russian Federation (topic no. 00657-2020-0006).

X-ray diffraction analysis of the samples was carried out within the framework of the State assignment of the Institute of Chemistry, Far Eastern Branch, RAS (topic no. 0205-2021-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Shapkin.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapkin, N.P., Papynov, E.K., Shichalin, O.O. et al. Spark Plasma Sintering-Reactive Synthesis of SiC and SiC–HfB2 Ceramics Based on Natural Renewable Raw Materials. Russ. J. Inorg. Chem. 66, 629–637 (2021). https://doi.org/10.1134/S0036023621050168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621050168

Keywords:

Navigation