Skip to main content
Log in

DIELECTRIC LAYERS BCxNy: SYNTHESIS BY THE DECOMPOSITION OF VAPORS OF ORGANOBORON COMPOUNDS, COMPOSITION AND CHEMICAL STRUCTURE

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Composition, chemical structure, and dielectric characteristics of boron carbonitride films BCxNy prepared by chemical vapor deposition upon thermal and plasma activation of the initial gas mixture are studied. The dependence of elemental composition, dielectric constant, and resistivity of the films on synthesis conditions (type of the organoboron precursor, synthesis temperature, type and content of the additional gas) are determined by Auger electron spectroscopy and X-ray photoelectron spectroscopy. The dielectric constants of prepared films vary within 3.7-6.3 and their resistivities vary within 1012-1015 Ω·cm. The stability of dielectric properties of BCxNy films during their storage in air is studied for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. M. R. Baklanov, C. Adelmann, S. De Gendt, and L. Zhao. ECS J. Solid State Sci. Technol., 2015, 4, Y1. https://doi.org/10.1149/2.0271501jss

    Article  CAS  Google Scholar 

  2. .0071505jss

  3. H. Miyajima, K. Ishikawa, M. Sekine, and M. Hori. Plasma Process Polym. 2019, 16, e1900039. https://doi.org/

  4. .1016/j.carbon.2017.06.024

  5. H. Yang and G. Lucovsky. , 1999, 128. https://doi.org/10.1016/S0022-3093(99)00387-7

    Article  CAS  Google Scholar 

  6. Y. H. Kim, S. K. Lee, and H. J. Kim. J. Vac. Sci. Technol. A, 2000, 18, 1216. https://doi.org/10.1116/1.582328

    Article  CAS  Google Scholar 

  7. A. Grill and D. A. Neumayer. J. Appl. Phys., 2003, 94, 6697. https://doi.org/10.1063/1.1618358

    Article  CAS  Google Scholar 

  8. B. J. Nordell, T. D. Nguyen, A. N. Caruso, S. S. Purohit, N. A. Oyler, W. A. Lanford, D. W. Gidley, J. T. Gaskins,P. E. Hopkins, P. Henry, S. W. King, and M. M. Paquette. Adv. Electron. Mater., 2017, 3, 1700116. https://doi.org/

  9. S. D. Nehate, A. K. Saikumar, A. Prakash, and K. B. Sundaram. Mater. Today Adv., 2020, 8, 100106. https://doi.org/

  10. A. Prakash, V. Todi, K. B. Sundaram, L. Ross, G. Xu., M. French, P. Henry, and S. W. King. ECS J. Solid State Sci. Technol., 2015, 4(3122). https://doi.org/10.1149/2.0191501jss

    Article  CAS  Google Scholar 

  11. Y. Etou, T. Tai, T. Sugiyama, and T. Sugino. Diamond Relat. Mater., 2002, 11, 985. https://doi.org/

  12. T. Sugiyama, T. Tai, and T. Sugino. Appl. Phys. Lett., 2002, 80, 4214. https://doi.org/10.1063/1.1482788

    Article  CAS  Google Scholar 

  13. S. Umeda, T. Yuki, T. Sugiyama, and T. Sugino. Diamond Relat. Mater., 2004, 13, 1135. https://doi.org/10.1016/

  14. T. Yuki, S. Umeda, and T. Sugino. Diamond Relat. Mater., 2004, 13, 1130. https://doi.org/10.1016/j.diamond.

  15. .01.005

  16. A. Bath, P. J. van der Put, J. Schoonman, and B. Lepley. Appl. Surf. Sci., 1989, 39, 135. https://doi.org/10.1016/

  17. S. Tokuyama, M. Hara, M. K. Mazumder, D. Watanabe, C. Kimura, H. Aoki, and T. Sugino. Jpn. J. Appl. Phys., 2008, 47(4), 2492. https://doi.org/10.1143/JJAP.47.2492

    Article  CAS  Google Scholar 

  18. H. Aoki, S. Tokuyama, T. Masuzumi, M. Hara, M. K. Mazumder, D. Watanabe, C. Kimura, and T. Sugino. Diamond Relat. Mater., 2009, 18, 1048. https://doi.org/10.1016/j.diamond.2009.01.012

    Article  CAS  Google Scholar 

  19. H. Aoki, T. Masuzumi, M. Hara, D. Watanabe, C. Kimura, and T. Sugino. Thin Solid Films, 2010, 518, 2102. https://doi.org/10.1016/j.tsf.2009.06.025

    Article  CAS  Google Scholar 

  20. V. S. Sulyaeva, M. L. Kosinova, Y. M. Rumyantsev, F. A. Kuznetsov, V. G. Kesler, and V. V. Kirienko. Thin Solid Films, 2014, 558, 112. https://doi.org/10.1016/j.tsf.2014.02.082

    Article  CAS  Google Scholar 

  21. L. Souqui, J. Palisaitis, H. Hogberg, and H. Pedersen. J. Mater. Chem. C, 2020, 8, 4112. https://doi.org/10.1039/

  22. E. R. Engbrecht, C. J. Cilino, K. H. Junker, Y.-M. Sun, J. M. White, and J. G. Ekerdt. Mater. Res. Soc. Symp. Proc., 2003, 766, 351

  23. P. R. Fitzpatrick and J. G. Ekerdt. J. Vac. Sci. Technol. B, 2009, 27, 2366. https://doi.org/10.1116/1.3253534

    Article  CAS  Google Scholar 

  24. A. Essafti and E. Ech-chamikh. J. Mater. Sci., 2011, 46, 5847, DOI 10.1007/s10853-011-5541-5

  25. A. Prakash and K. B. Sundaram. ECS J. Solid State Sci. Technol., 2015, 4, N25. https://doi.org/10.1149/

  26. A. Prakash and K. B. Sundaram. J. Vac. Sci. Technol. B, 2016, 34, 040603. https://doi.org/10.1116/1.4948399

    Article  CAS  Google Scholar 

  27. Z. Zhang, C. Kimura, and T. Sugino. J. Appl. Phys., 2005. 98, 036105. https://doi.org/10.1063/1.1999023

    Article  CAS  Google Scholar 

  28. V. V. Volkov and K. G. Myakishev. Izv. Akad. Nauk SSSR, Ser. Khim., 1989, 1, 23. [IN RUSSIAN]

  29. V. G. Kesler, M. L. Kosinova, Yu. M. Rumyantsev, and V. S. Sulyaeva. J. Struct. Chem., 2012, 53, 699-707. https://doi.org/10.1134/S0022476612040129

    Article  CAS  Google Scholar 

  30. O. Baake, P. S. Hoffmann, M. L. Kosinova, A. Klein, B. Pollakowski, B. Beckhoff, N. I. Fainer, V. A. Trunova, andW. Ensinger. Anal. Bioanal. Chem., 2010, 398, 1077. https://doi.org/10.1007/s00216-010-3965-4

    Article  CAS  PubMed  Google Scholar 

  31. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg. Handbook of X-Ray Photoelectron Spectroscopy. Eden Prairie, Minnesota: Perkin-Elmer Corporation, 1978.

  32. E. G. Brame, J. L. Margrave, and V. W. Meloche. J. Inorg. Nucl. Chem., 1957, 5, 48.

  33. P.-C. Li and M. P. Lepie. J. Am. Ceram. Soc., 1965, 48, 277.

  34. R. Geick, C. H. Perry, and G. Rupprecht. Phys. Rev., 1966, 146, 543.

  35. V. P. Tolstoy, I. V. Chernyshova, and V. A. Skryshevsky. Handbook of Infrared Spectroscopy of Ultrathin Films, New Jersey: John Wiley & Sons, 2003. https://doi.org/10.1002/047123432x

  36. H. Binnenbruck and H. Werheit. J. Phys. Sci., 1979, 34, 787. https://doi.org/10.1515/zna-1979-0701

    Article  Google Scholar 

  37. K. Shirai, S. Emura, S. I. Gonda, and Y. Kumashiro. J. Appl. Phys., 1995, 78, 3392. https://doi.org/10.1063/1.359967

    Article  CAS  Google Scholar 

  38. W. G. Shin, S. Calder, O. Ugurlu, and S. L. Girshick. J. Nanopart. Res., 2011, 13, 7187, https://doi.org/10.1007/

  39. L. J. Bellamy. The Infrared Spectra of Complex Molecules, (3rd ed.), Wiley, New York, 1975.

  40. A. Essafti, E. Ech-chamikh, and M. Azizan. Spectrosc. Lett., 2008, 41, 57. https://doi.org/10.1080/00387010801938228

    Article  CAS  Google Scholar 

  41. D. R. Tallant, T. L. Aselage, A. N. Campbell, and D. Emin. Phys. Rev. B., 1989, 40, 5649. https://doi.org/10.1103/

  42. A. C. Ferrari and J. Robertson. Phys. Rev. B, 2001, 64, 1, https://doi.org/10.1103/PhysRevB.64.075414

    Article  Google Scholar 

  43. E. V. Prilutskii, G. N. Makarenko, and T. I. Serebryakova. Vysokotemperaturnye karbidy (High-Temperature Carbides). Kiev: Naukova dumka, 1975, 84-89.

  44. C. B. Wang, J. L. Xiao, Q. Shen, and L. M. Zhang. Thin Solid Films, 2016, 603, 323. https://doi.org/10.1016/

  45. G. Puyoo, F. Teyssandier, R. Pailler, C. Labrugère, and G. Chollon. Carbon, 2017, 122, 19. https://doi.org/

  46. A. Prakash and K. B. Sundaram. Appl. Surf. Sci., 2017, 396, 484.

  47. A. V. Naumkin, A. Kraut-Vass, S. W. Gaarenstroom, and C. J. Powell. NIST X-Ray Photoelectron Spectroscopy Database. Meas. Serv. Div. Natl. Inst. Stand. Technol., 2000. https://doi.org/10.18434/T4T88K

  48. M. F. Genisel, M. N. Uddin, Z. Say, M. Kulakci, R. Turan, O. Gulseren, and E. Bengu. J. Appl. Phys., 2011, 110, 074906. https://doi.org/10.1063/1.3638129

    Article  CAS  Google Scholar 

  49. J. Díaz, G. Paolicelli, S. Ferrer, and F. Comin. Phys. Rev. B, 1996, 54, 8064. https://doi.org/10.1103/PhysRevB.54.8064

    Article  Google Scholar 

  50. S. Ulrich, A. Kratzsch, H. Leiste, M. Stuber, P. Schlobmacher, and H. Holleck. Surf. Coat. Technol., 1999, 116-119, 742. https://doi.org/10.1016/S0257-8972(99)00353-9

    Article  CAS  Google Scholar 

  51. T. V. Dubovik and T. V. Andreeva. J. Less-Common Met., 1986, 117, 265. https://doi.org/10.1016/0022-5088(86)

  52. M. L. Kosinova, N. I. Fainer, Yu. M. Rumyantsev, M. Terauchi, K. Shibata, F. Satoh, M. Tanaka, and F. A. Kuznetsov.J. Phys. IV, 2001, 11, Pr3-987. https://doi.org/10.1051/jp4:20013124

    Article  Google Scholar 

  53. M. L. Kosinova, N. I. Fainer, V. S. Sulayeva, Yu. M. Rumyantsev, F. A. Kuznetsov, E. A. Maximovski, Z. X. Cao,M. Terauchi, K. Shibata, and F. Satoh. In: EUROCVD-15: Fifteenth European Conference on Chemical Vapor Deposition; Proceedings of the International Symposium, Bochum, Germany, Sept. 5-9, 2005. Princeton, NJ: Electrochemical Society, 2005, Vol. 2005-09, 1082.

  54. V. S. Sulyaeva, Yu. M. Rumyantsev, M. L. Kosinova, A. N. Golubenko, N. I. Fainer, and F. A. Kuznetsov. Surf. Coat. Technol., 2007, 201, 9009. https://doi.org/10.1016/j.surfcoat.2007.04.016

    Article  CAS  Google Scholar 

  55. V. S. Sulyaeva, M. L. Kosinova, Yu. M. Rumyantsev, N. I. Fainer, N. I. Alferova, B. M. Ayupov, P. N. Gevko,B. A. Kolesov, E. A. Maksimovskii, K. G. Myakishev, I. V. Yushina, and F. A. Kuznetsov. Inorg. Mater., 2010, 46, 487. https://doi.org/10.1134/S0020168510050092

    Article  CAS  Google Scholar 

  56. V. S. Sulyaeva, M. L. Kosinova, Yu. M. Rumyantsev, V. G. Kesler, and F. A. Kuznetsov. Surf. Coat. Technol., 2013, 230, 145. https://doi.org/10.1016/j.surfcoat.2013.06.018

    Article  CAS  Google Scholar 

  57. V. S. Sulyaeva, Yu. M. Rumyantsev, V. G. Kesler, and M. L. Kosinova. Thin Solid Films, 2015, 581, 59. https://doi.org/10.1016/j.tsf.2014.12.002

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially funded by RFBR and the Government of the Novosibirsk Region (project No. 20-43-540016p_a).

The optical and mechanical characteristics of the films were studied with the support of the Ministry of Science and Higher Education of the Russian Federation (project FWUZ-2021-0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Sulyaeva.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 10, pp. 1736-1753.https://doi.org/10.26902/JSC_id87084

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulyaeva, V.S., Kesler, V.G. & Kosinova, M.L. DIELECTRIC LAYERS BCxNy: SYNTHESIS BY THE DECOMPOSITION OF VAPORS OF ORGANOBORON COMPOUNDS, COMPOSITION AND CHEMICAL STRUCTURE. J Struct Chem 62, 1631–1647 (2021). https://doi.org/10.1134/S0022476621100188

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621100188

Keywords

Navigation