Skip to main content
Log in

CHEMICAL STRUCTURE AND FUNCTIONAL PROPERTIES OF AMORPHOUS BORON CARBONITRIDE FILMS

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

We report a comprehensive study of the effect of the chemical structure of boron carbonitride films on the variability of their functional characteristics. The BCxNy films are prepared on Si(100) and fused silica substrates by reactive magnetron sputtering of a B4C target in an argon/nitrogen mixture. The deposition rate, elemental composition, and types of chemical bonds in the films is studied depending on the nitrogen content in the gas mixture. Optical (refractive index, transmission coefficient, band gap) and mechanical (hardness, Young′s modulus, substrate adhesion) characteristics are investigated depending on the deposition parameters and the chemical structure of the films. Particular attention is paid to the surface properties of the BCxNy films (morphology, roughness, contact angle, and surface free energy). Stability of the BCxNy films upon storage in air is studied for the first time. The data obtained for the composition, structural characteristics, and some functional properties of the BCxNy films are compared with those reported in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. S. D. Nehate, A. K. Saikumar, A. Prakash, and K. B. Sundaram. Mater. Today Adv., 2020, 8, 100106, DOI: 10.1016/j.mtadv.2020.100106.

    Article  Google Scholar 

  2. M. M. Zagho, H. D. Dawoud, N. Bensalah, and T. M. Altahtamouni. Emergent Mater., 2018, 2, 79-93, DOI: 10.1007/s42247-018-0018-9.

    Article  CAS  Google Scholar 

  3. T. V. Dubovik and L. I. Struk. Powder Metall. Met. Ceram., 1966, 5, 430-432.

    Article  Google Scholar 

  4. P. Hoffmann, N. Fainer, M. Kosinova, O. Baake, and W. Ensinger. Compil. Synth., Charact. and Prop. Silicon and Boron Carbonitride Films. In: Silicon Carbide - Mater. Process. and Appl. in Electron. Devices / Ed. M. Mukherjee. In Tech: Rijeka, Croatia, 2011, 487-546, DOI: 10.5772/24330.

  5. A. Lousa, J. Esteve, S. Muhl, and E. Martínez. Diamond Relat. Mater., 2000, 9, 502-505, DOI: 10.1016/S0925-9635(99)00319-2.

    Article  CAS  Google Scholar 

  6. A. Prakash and K. B. Sundaram. ECS J. Solid State Sci. Technol., 2015, 4, N25-N29, DOI: 10.1149/2.0071505jss.

    Article  CAS  Google Scholar 

  7. V. O. Todi, B. P. Shantheyanda, R. M. Todi, K. B. Sundaram, and K. Coffey. Mater. Sci. Eng., B, 2011, 176, 878-882, DOI: 10.1016/j.mseb.2011.05.010.

    Article  CAS  Google Scholar 

  8. Z. Wu, S. Li, Z. Xu, Q. Wang, and F. Zhou. Sci. Eng. Compos. Mater., 2019, 26, 402-411, DOI: 10.1515/secm-2019-0023.

    Article  CAS  Google Scholar 

  9. Z. Wu, S. Li, Z. Xu, Q. Wang, and F. Zhou. Adv. Compos. Lett., 2019, 28, 1-10, DOI: 10.1177/0963693519875737.

    Article  Google Scholar 

  10. M. A. Mannan, H. Noguchi, T. Kida, M. Nagano, N. Hirao, and Y. Baba. Mater. Sci. Semicond. Process., 2008, 11, 100-105, DOI: 10.1016/j.mssp.2009.04.003.

    Article  CAS  Google Scholar 

  11. E. Martínez, A. Lousa, and J. Esteve. Diamond Relat. Mater., 2001, 10, 1892-1896, DOI: 10.1016/S0925-9635(01)00429-0.

    Article  CAS  Google Scholar 

  12. V. O. Todi and K. B. Sundaram. Electrochem. Solid-State Lett., 2011, 14, G49-G51, DOI: 10.1149/1.3610430.

    Article  CAS  Google Scholar 

  13. A. Essafti and E. Ech-Chamikh. J. Mater. Sci., 2011, 46, 5847-5850, DOI: 10.1007/s10853-011-5541-5.

    Article  CAS  Google Scholar 

  14. A. Prakash and K. B. Sundaram. ECS Trans., 2014, 61, 51-56, DOI: 10.1149/08513.1525ecst.

    Article  CAS  Google Scholar 

  15. V. O. Todi, B. P. Shantheyanda, and K. B. Sundaram. Mater. Chem. Phys., 2013, 141, 596-601, DOI: 10.1016/j.matchemphys.2013.04.036.

    Article  CAS  Google Scholar 

  16. A. Prakash, G. Skaria, and K. B. Sundaram. ECS Trans., 2013, 53, 53-58, DOI: 10.1149/05329.0053ecst.

    Article  CAS  Google Scholar 

  17. E. Bengu, M. F. Genisel, O. Gulseren, and R. Ovali. Thin Solid Films, 2009, 518, 1459-1464, DOI: 10.1016/j.tsf.2009.09.106.

    Article  CAS  Google Scholar 

  18. X. Jiang, C. Zhuang, X. Li, L. Sai, J. Zhao, and X. Jiang. Diamond Relat. Mater., 2011, 20, 891-895, DOI: 10.1016/j.diamond.2011.05.001.

    Article  CAS  Google Scholar 

  19. M. L. Kosinova, N. I. Fainer, Y. M. Rumyantsev, A. N. Golubenko, and F. A. Kuznetsov. J. Phys. IV, 1999, 9, Pr8-915-Pr-8-921.

    Article  Google Scholar 

  20. M. L. Kosinova, Y. M. Rumyantsev, N. I. Fainer, E. A. Maximovski, and F. A. Kuznetsov. Nucl. Instrum. Methods Phys. Res., Sect. A, 2001, 470, 253-257, DOI: 10.1016/S0168-9002(01)01070-1.

    Article  CAS  Google Scholar 

  21. V. S. Sulyaeva, Y. M. Rumyantsev, M. L. Kosinova, A. N. Golubenko, N. I. Fainer, and F. A. Kuznetsov. Surf. Coat. Technol., 2007, 201, 9009-9014, DOI: 10.1016/j.surfcoat.2007.04.016.

    Article  CAS  Google Scholar 

  22. V. G. Kesler, M. L. Kosinova, Yu. M. Rumyantsev, and V. S . Sulyaeva. J. Struct. Chem., 2012, 53, 699-707.

    Article  CAS  Google Scholar 

  23. V.S. Sulyaeva, M.L. Kosinova, Y. Rumyantsev, V.G. Kesler, F.A. Kuznetsov. Surf. Coat. Technol., 2013, 230, 145-151, DOI: 10.1016/j.surfcoat.2013.06.018.

    Article  CAS  Google Scholar 

  24. V. S. Sulyaeva, A. G. Plekhanov, E. A. Maksimovskii, N. I. Fainer, Yu. M. Rumyantsev, and M. L. Kosinova. Fizikokhim. Poverkhn. Zashch. Mater., 2017, 53, 662-666, DOI: 10.7868/s0044185617060225.

    Article  Google Scholar 

  25. J. H. Scofield. J. Electron Spectrosc. Relat. Phenom., 1976, 8, 129-137, DOI: 10.1016/0368-2048(76)80015-1.

    Article  CAS  Google Scholar 

  26. N. Bhaskar, V. Sulyaeva, E. Gatapova, V. Kaichev, D. Rogilo, M. Khomyakov, M. Kosinova, and B. Basu. ACS Biomater. Sci. Eng., 2020, 6, 5571-5587, DOI: 10.1021/acsbiomaterials.0c00472.

    Article  CAS  PubMed  Google Scholar 

  27. E. Y. Gatapova, A. M. Shonina, A. I. Safonov, V. S. Sulyaeva, and O. A. Kabov. Soft Matter, 2018, 14, 1811-1821, DOI: 10.1039/c7sm02192e.

    Article  CAS  PubMed  Google Scholar 

  28. D. H. Kaelble. J. Adhes., 1970, 2, 66-81, DOI: 10.1080/0021846708544582.

    Article  CAS  Google Scholar 

  29. E. B. Berlin and L. A. Seidman. Poluchenie Tonk. Plenok Reakt. Magnetron. Raspylen. (Prep. Thin Films React. Magnetron Sputtering) [in Russian]. Tekhnosfera: Moscow, 2014.

  30. F. L. Freire, D. C. Reigada, and R. Prioli. Phys. Status Solidi A, 2001, 187, 1-12, DOI: 10.1002/1521-396X(200109)187:1<1::AID-PSSA1>3.0.CO;2-O.

    Article  CAS  Google Scholar 

  31. Y. Chen, Y. W. Chung, and S. Y. Li. Surf. Coat. Technol., 2006, 200, 4072-4077, DOI: 10.1016/j.surfcoat.2005.02.164.

    Article  CAS  Google Scholar 

  32. Y. Chen, S. Yang, and J. Zhang. Appl. Surf. Sci., 2009, 255, 8575-8581, DOI: 10.1016/j.apsusc.2009.06.024.

    Article  CAS  Google Scholar 

  33. Z. Fan, Y. Cheng, and Y. Luo. Opt. Mater. (Amsterdam, Neth.), 2020, 110, 110502, DOI: 10.1016/j.optmat.2020.110502.

    Article  CAS  Google Scholar 

  34. T. Hirte, R. Feuerfeil, V. Perez-Solorzano, T. A. Wagner, and M. Scherge. Surf. Coat. Technol., 2015, 284, 94-100, DOI: 10.1016/j.surfcoat.2015.07.077.

    Article  CAS  Google Scholar 

  35. M. F. Maitz, R. Gago, B. Abendroth, M. Camero, I. Caretti, and U. Kreissig. J. Biomed. Mater. Res., Part B, 2006, 77, 179-187, DOI: 10.1002/jbm.b.30435.

    Article  CAS  Google Scholar 

  36. M. Krause, L. Bedel, A. Taupeau, U. Kreissig, F. Munnik, G. Abrasonis, A. Kolitsch, G. Radnoczi, Z. Czigány, and A. Vanhulsel. Thin Solid Films, 2009, 518, 77-83, DOI: 10.1016/j.tsf.2009.06.030.

    Article  CAS  Google Scholar 

  37. E. Salas, R.J. Jiménez Riobóo, J. Sánchez-Marcos, F. Jiménez-Villacorta, A. Muñoz-Martín, J. E. Prieto, V. Joco, and C. Prieto. J. Appl. Phys., 2013, 114, DOI: 10.1063/1.4837655.

    Article  CAS  Google Scholar 

  38. S. Xu, X. Ma, and M. Su. IEEE Trans. Plasma Sci., 2006, 34, 1199-1203, DOI: 10.1109/TPS.2006.879179.

    Article  CAS  Google Scholar 

  39. D. C. Reigada and F. L. Freire. Surf. Coat. Technol., 2001, 142-144, 889-893, DOI: 10.1016/S0257-8972(01)01213-0.

    Article  CAS  Google Scholar 

  40. R. Geick, C. H. Perry, and G. Rupprecht. Phys. Rev., 1966, 146, 543-547.

    Article  CAS  Google Scholar 

  41. V. P. Tolstoy, I. V. Chernyshova, and V. A. Skryshevsky. Handbook of Infrared Spectrosc. of Ultrathin Films. John Wiley &amp;amp; SonsЖ New Jersey, 2003, DOI: 10.1002/047123432x.

  42. H. Binnenbruck and H. Werheit. Z. Naturforsch., A: Phys. Sci., 1979, 34, 787-798, DOI: 10.1515/zna-1979-0701.

    Article  Google Scholar 

  43. K. Shirai, S. Emura, S. I. Gonda, and Y. Kumashiro. J. Appl. Phys., 1995, 78, 3392-3400, DOI: 10.1063/1.359967.

    Article  CAS  Google Scholar 

  44. W. G. Shin, S. Calder, O. Ugurlu, and S. L. Girshick. J. Nanopart. Res., 2011, 13, 7187-7191, DOI: 10.1007/s11051-011-0633-3.

    Article  CAS  Google Scholar 

  45. L. Bellamy. The Infra-Red Spectra of Complex Molecules. Springer: Netherlands, 1975.

  46. A. Essafti, E. Ech-Chamikh, and M. Azizan. Spectrosc. Lett., 2008, 41, 57-63, DOI: 10.1080/00387010801938228.

    Article  CAS  Google Scholar 

  47. A. Lousa, J. Esteve, and S. Muhl, E. Martínez. Diamond Relat. Mater., 2000, 9, 502-505, DOI: 10.1016/S0925-9635(99)00319-2.

    Article  CAS  Google Scholar 

  48. J. H. Parker, D. W. Feldman, and M. Ashkin. Phys. Rev., 1967, 155, 712-714, DOI: 10.1103/PhysRev.155.712.

    Article  CAS  Google Scholar 

  49. D. R. Tallant, T. L. Aselage, A. N. Campbell, and D. Emin. Phys. Rev. B, 1989, 40, 5649-5656, DOI: 10.1103/PhysRevB.40.5649.

    Article  CAS  Google Scholar 

  50. A. C. Ferrari and J. Robertson. Phys. Rev. B: Condens. Matter Mater. Phys., 2001, 64, 1-13, DOI: 10.1103/PhysRevB.64.075414.

    Article  Google Scholar 

  51. Yu. M. Shulga, T. M. Moravskaya, S. V. Gurov, V. I. Chukalin, and Yu. G. Borodko. Poverkhn.: Fiz., Khim., Mekh., 1990, Iss. 10, 155.

  52. Yu. M. Shulga, and V. E. Loryan. Zh. Neorg. Khim., 1994, 39, 1096.

  53. Y. V. Fedoseeva, M. L. Kosinova, S. A. Prokhorova, I. S. Merenkov, L. G. Bulusheva, A. V. Okotrub, and F. A. Kuznetsov. J. Struct. Chem., 2012, 53(4), 690-698, DOI: 10.1134/S0022476612040117.

    Article  CAS  Google Scholar 

  54. G. Puyoo, F. Teyssandier, R. Pailler, C. Labrugère, and G. Chollon. Carbon, 2017, 122, 19-46, DOI: 10.1016/j.carbon.2017.06.024.

    Article  CAS  Google Scholar 

  55. A. Prakash and K. B. Sundaram. Appl. Surf. Sci., 2017, 396, 484-491, DOI: 10.1016/j.apsusc.2016.10.180.

    Article  CAS  Google Scholar 

  56. A. V. Naumkin, A. Kraut-Vass, S. W. Gaarenstroom, and C. J. Powell. NIST X-ray Photoelectron Spectrosc. Database. Meas. Serv. Div. Natl. Inst. Stand. Technol., 2000, DOI: 10.18434/T4T88K.

  57. C. B. Wang, J. L. Xiao, Q. Shen, and L. M. Zhang. Thin Solid Films, 2016, 603, 323-327, DOI: 10.1016/j.tsf.2016.02.053.

    Article  CAS  Google Scholar 

  58. J. Díaz, G. Paolicelli, S. Ferrer, and F. Comin. Phys. Rev. B: Condens. Matter Mater. Phys., 1996, 54, 8064-8069, DOI: 10.1103/PhysRevB.54.8064.

    Article  Google Scholar 

  59. M. F. Genisel, M. N. Uddin, Z. Say, M. Kulakci, R. Turan, O. Gulseren, and E. Bengu. J. Appl. Phys., 2011, 110, DOI: 10.1063/1.3638129.

    Article  CAS  Google Scholar 

  60. C. V. Ramana, R. S. Vemuri, V. V. Kaichev, V. A. Kochubey, A. A. Saraev, and V. V. Atuchin. ACS Appl. Mater. Interfaces, 2011, 3, 4370-4373, DOI: 10.1021/am201021m.

    Article  CAS  PubMed  Google Scholar 

  61. Fiz.-khim. Svoist. Poluprovod. Veshchestv (Physicochem. Prop. Semicond.) [in Russian] / Eds. A. V. Novoselova and V. B. Lazarev. Nauka: Moscow, 1979.

  62. A. Prakash, V. Todi, K. B. Sundaram, and S. W. King. ECS Trans., 2014, 58, 147-153, DOI: 10.1149/05825.0147ecst.

    Article  Google Scholar 

  63. A. Useinov, K. Kravchuk, and N. Lvova. Nanoindustriya, 2011, 46-49.

  64. S. Xu, L. Wang, X. Ma, G. Tang, and M. Sun. Nanosci. Nanotechnol. Lett., 2011, 3, 276-279, DOI: 10.1166/nnl.2011.1152.

    Article  CAS  Google Scholar 

Download references

Funding

The reported study was funded by RFBR-BRICS (Grant No. 18-53-80016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Sulyaeva.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2021, published in Zhurnal Strukturnoi Khimii, 2021, Vol. 62, No. 8, pp. 1396-1412.https://doi.org/10.26902/JSC_id78472

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulyaeva, V.S., Gatapova, E.Y., Kozhevnikov, A.K. et al. CHEMICAL STRUCTURE AND FUNCTIONAL PROPERTIES OF AMORPHOUS BORON CARBONITRIDE FILMS. J Struct Chem 62, 1309–1324 (2021). https://doi.org/10.1134/S0022476621080187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476621080187

Keywords

Navigation