Skip to main content
Log in

A Test System for Monitoring the Genetic Purity of Transgenic Mouse Lines Expressing Chloride and Hydrogen Biosensor

  • Methodological Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Genetically engineered animal models have been widely used in various fields of medicine and biological research. Thousands of genetically modified transgenic mouse models have been generated in recent decades and their production is accelerating. Therefore, the maintenance and control of the genetic purity of these transgenic lines are important challenges. In our research, we use the transgenic mouse lines that express genetically encoded neural probes for noninvasive recording of chloride ions (Cl-Sensor) and simultaneous monitoring of chloride and hydrogen (ClopHensor). To maintain the purity of these lines, we have developed a test system for the genotyping of transgenic mice. The method is characterized by a high reliability of results and can be used for further control of the genetic purity of these lines, as well as other animal lines with slightly different regions of amino acid sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Asrican B, Augustine GJ, Berglund K, Chen S, Chow N, Deisseroth K, Feng G, Gloss B, Hira R, Hoffmann C, Kasai H (2013) Next-generation transgenic mice for optogenetic analysis of neural circuits. Front Neural Circuits 7: 160. https://doi.org/10.3389/fncir.2013.00160

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ting JT, Feng G (2013) Development of transgenic animals for optogenetic manipulation of mammalian nervous system function: progress and prospects for behavioral neuroscience. Behav Brain Res 255: 3–18. https://doi.org/10.1016/j.bbr.2013.02.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Partridge JG (2015) Utilizing GCaMP transgenic mice to monitor endogenous Gq/11-coupled receptors. Front Pharmacol 6: 42. https://doi.org/10.3389/fphar.2015.00042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Almeida JL, Dakic A, Kindig K, Kone M, Letham DLD, Langdon S, Peat R, Holding-Pillai J, Hall EM, Ladd M, Shaffer MD, Berg H, Li J, Wigger G, Lund S, Steffen CR, Fransway BB, Geraghty B, Natoli M, Bauer B, Gollin SM, Lewis DW, Reid Y (2019) Interlaboratory study to validate a STR profiling method for intraspecies identification of mouse cell lines. PLoS One 14(6): e0218412. https://doi.org/10.1371/journal.pone.0218412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Silva AJ, Simpson EM, Takahashi JS, Lipp HP, Nakanishi S, Wehner JM, Giese KP, Tully T, Abel T, Chapman PF, Fox K (1997) Mutant mice and neuroscience: recommendations concerning genetic background. Neuron 19(4): 755–759. https://doi.org/10.1016/S0896-6273(00)80958-7

    Article  Google Scholar 

  6. Haruyama N, Cho A, Kulkarni AB (2009) Overview: engineering transgenic constructs and mice. Current Protocol Cell Biol 42:19.10.1-19.10.9. https://doi.org/10.1002/0471143030.cb1910s42

    Article  Google Scholar 

  7. Benavides F, Rülicke T, Prins J-B, Bussell J, Scavizzi F, Cinelli P, Herault Y, Wedekind D (2020) Genetic quality assurance and genetic monitoring of laboratory mice and rats: FELASA Working Group Report 54(2): 135–148. https://doi.org/10.1177/0023677219867719

  8. Linder CC (2003) Mouse nomenclature and maintenance of genetically engineered mice. Compar Med 53(2): 119–125.

    CAS  Google Scholar 

  9. Almeida JL, Hill CR, Cole KD (2014) Mouse cell line authentication. Cytotechnology 66: 133–147. https://doi.org/10.1007/s10616-013-9545-7

    Article  CAS  PubMed  Google Scholar 

  10. Lusis AJ, Yu J, Wang SS (2007) The Problem of Passenger Genes in Transgenic Mice. Am Heart Associat 27: 2100–2103. https://doi.org/10.1161/ATVBAHA.107.147918

    Article  CAS  Google Scholar 

  11. Dennis MB (2002) Welfare issues of genetically modified animals. ILAR J 43(2): 100–109. https://doi.org/10.1093/ilar.43.2.100

    Article  CAS  PubMed  Google Scholar 

  12. Wolfer DP, Crusio WE and Lipp HP (2002) Knockout mice: simple solutions to the problems of genetic background and flanking genes. Trends Neurosci 25(7): 336–340. https://doi.org/10.1016/S0166-2236(02)02192-6

    Article  CAS  PubMed  Google Scholar 

  13. Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N, Croce CM (2006) Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in Eμ-miR155 transgenic mice. Proc Natl Acad Sci USA 103(18): 7024–7029. https://doi.org/10.1073/pnas.0602266103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takada T, Awaji T, Itoh K, Takahashi R, Shibui A, Yoshida K, Sugano S, Tsujimoto G (1997) Selective production of transgenic mice using green fluorescent protein as a marker. Nature Biotechnol 15(5): 458–461. https://doi.org/10.1038/nbt0597-458

    Article  CAS  Google Scholar 

  15. Batti L, Mukhtarov M, Audero E, Ivanov A, Paolicelli RC, Zurborg S, Gross C, Bregestovski P, Heppenstall PA (2013) Transgenic mouse lines for non-invasive ratiometric monitoring of intracellular chloride. Front Mol Neurosci 6:11. https://doi.org/10.3389/fnmol.2013.00011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Diuba AV, Samigullin DV, Kaszas A, Zonfrillo F, Malkov A, Petukhova E, Casini A, Arosio D, Esclapez M, Gross CT, Bregestovski P (2020) CLARITY analysis of the Cl/pH sensor expression in the brain of transgenic mice. Neuroscience 439: 181–194. https://doi.org/10.1016/j.neuroscience.2019.07.010

    Article  CAS  PubMed  Google Scholar 

  17. Bregestovski P, Arosio D (2011) Green Fluorescent Protein-Based Chloride Ion Sensors for In Vivo Imaging. In: Jung G (eds) Fluorescent Proteins II. Springer Series on Fluorescence 12. Springer, Berlin Heidelberg. https://doi.org/10.1007/4243_2011_27

    Chapter  Google Scholar 

  18. Edelstein AD, Tsuchida MA, Amodaj N, Pinkard H, Vale RD (2014) Advanced methods of microscope control using μManager software. J Biol Methods 1(2): 1–10. https://doi.org/10.14440/jbm.2014.36

    Article  Google Scholar 

  19. Ponomareva D, Petukhova E, Bregestovski P (2021) Simultaneous Monitoring of pH and Chloride (Cl–) in Brain Slices of Transgenic Mice. Int J Mol Sci 22(24): 13601. https://doi.org/10.3390/ijms222413601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Markova O, Mukhtarov M, Real E, Jacob Y, Bregestovski P (2008) Genetically encoded chloride indicator with improved sensitivity. J Neurosci Methods 170(1): 67–76. https://doi.org/10.1016/j.jneumeth.2007.12.016

    Article  CAS  PubMed  Google Scholar 

  21. Arosio D, Ricci F, Marchetti L, Gualdani R, Albertazzi L, Beltram F (2010) Simultaneous intracellular chloride and pH measurements using a GFP-based sensor. Nature Methods 7(7): 516–518. https://doi.org/10.1038/nmeth.1471

    Article  CAS  PubMed  Google Scholar 

  22. Mukhtarov M, Markova O, Real E, Jacob Y, Buldakova S, Bregestovski P (2008) Monitoring of chloride and activity of glycine receptor channels using genetically encoded fluorescent sensors. Philosoph Transact Royal Soc A: Mathemat Physical Engineer Sci 366(1880): 3445–3462. https://doi.org/10.1098/rsta.2008.0133

    Article  CAS  Google Scholar 

  23. Waseem T, Mukhtarov M, Buldakova S, Medina I, Bregestovski P (2010) Genetically encoded Cl-Sensor as a tool for monitoring of Cl-dependent processes in small neuronal compartments. J Neurosci Methods 193(1): 14–23. https://doi.org/10.1016/j.jneumeth.2010.08.002

    Article  CAS  PubMed  Google Scholar 

  24. Caroni P (1997) Overexpression of growth-associated proteins in the neurons of adult transgenic mice. J Neurosci Methods 71(1): 3–9. https://doi.org/10.1016/S0165-0270(96)00121-5

    Article  CAS  PubMed  Google Scholar 

  25. Arenkiel BR, Peca J, Davison IG, Feliciano C, Deisseroth K, Augustine GJ, Ehlers MD, Feng G (2007) In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54(2): 205–218. https://doi.org/10.1016/j.neuron.2007.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berglund K, Schleich W, Wang H, Feng G, Hall WC, Kuner T, Augustine GJ (2008) Imaging synaptic inhibition throughout the brain via genetically targeted Clomeleon. Brain Cell Biol 36: 101–118. https://doi.org/10.1007/s11068-008-9031-x

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bradley A (2002) Mining the mouse genome. Nature 420: 512–514. https://doi.org/10.1038/420512a

    Article  CAS  PubMed  Google Scholar 

  28. Zhang Z, Carriero N, Gerstein M (2004) Comparative analysis of processed pseudogenes in the mouse and human genomes. Trends Genetics 20(2): 62–67. https://doi.org/10.1016/j.tig.2003.12.005

    Article  CAS  Google Scholar 

  29. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR (2000) Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28(1): 41–51. https://doi.org/10.1016/S0896-6273(00)00084-2

    Article  CAS  PubMed  Google Scholar 

  30. Bryan KJ, Lee HG, Perry G, Smith MA, Casadesus G (2011) Transgenic mouse models of Alzheimer’s disease: behavioral testing and considerations. In: Methods of Behavior Analysis in Neuroscience. 2nd edition.

    Google Scholar 

  31. Yang XW, Gong S (2005) An overview on the generation of BAC transgenic mice for neuroscience research. Current Protocols Neurosci 31(1): 5–20. https://doi.org/10.1002/0471142301.ns0520s31

    Article  Google Scholar 

  32. Navabpour S, Kwapis JL, Jarome TJ (2020) A neuroscientist’s guide to transgenic mice and other genetic tools. Neurosci Biobehav Rev 108: 732–748. https://doi.org/10.1016/j.neubiorev.2019.12.013

    Article  PubMed  Google Scholar 

  33. Kamioka Y, Sumiyama K, Mizuno R, Sakai Y, Hirata E, Kiyokawa E, Matsuda M (2012) Live imaging of protein kinase activities in transgenic mice expressing FRET biosensors. Cell Struct Funct 37(1): 65–73. https://doi.org/10.1247/csf.11045

    Article  CAS  PubMed  Google Scholar 

  34. Halls ML, Canals M (2018) Genetically encoded FRET biosensors to illuminate compartmentalised GPCR signalling. Trends Pharmacol Sci 39(2): 148–157. https://doi.org/10.1016/j.tips.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  35. Gong B, Kielar C, Morton AJ (2012) Temporal separation of aggregation and ubiquitination during early inclusion formation in transgenic mice carrying the Huntington’s disease mutation. PloS One 7(7): e41450. https://doi.org/10.1371/journal.pone.0041450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vázquez-Chona FR, Clark AM, Levine EM (2009) Rlbp1 promoter drives robust Müller glial GFP expression in transgenic mice. Invest Ophthalmol Visual Sci 50(8): 3996–4003. https://doi.org/10.1167/iovs.08-3189

    Article  Google Scholar 

  37. Bridge KE, Berg N, Adalbert R, Babetto E, Dias T, Spillantini MG, Ribchester RR, Coleman MP (2009) Late onset distal axonal swelling in YFP-H transgenic mice. Neurobiol Aging 30(2): 309–321. https://doi.org/10.1016/j.neurobiolaging.2007.06.002

    Article  PubMed  Google Scholar 

  38. Taylor-Clark TE, Wu KY, Thompson JA, Yang K, Bahia PK, Ajmo JM (2015) Thy1. 2 YFP-16 transgenic mouse labels a subset of large-diameter sensory neurons that lack TRPV1 expression. PLoS One 10(3): e0119538. https://doi.org/10.1371/journal.pone.0119538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonegawa S, Papaioannou VE (1992) RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68(5): 869–877. https://doi.org/10.1016/0092-8674(92)90030-G

    Article  CAS  PubMed  Google Scholar 

  40. Suckow MA, Danneman P, Brayton C (2001) The laboratory mouse. CRC Press Inc. https://doi.org/10.1201/9780849376276

    Book  Google Scholar 

  41. Yakubova A, Davidyuk Y, Tohka J, Khayrutdinova O, Kudryavtsev I, Nurkhametova D, Kamshilin A, Giniatullin R, Rizvanov A (2021) Searching for Predictors of Migraine Chronification: a Pilot Study of 1911A>G Polymorphism of TRPV1 Gene in Episodic Versus Chronic Migraine. J Mol Neurosci 71: 618–624. https://doi.org/10.1007/s12031-020-01683-9

    Article  CAS  PubMed  Google Scholar 

  42. Casola S (2010) Mouse models for miRNA expression: the ROSA26 locus. In: MicroRNAs and the Immune System. Humana Press, Totowa. 145–163. https://doi.org/10.1007/978-1-60761-811-9_10

    Chapter  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation project no. 18-15-00313 “The developing of pharmacological approaches to correct inhibitory processes in the central nervous system in neurological diseases”, as well as the Program of the Strategic Academic Leadership of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design (Yu.N.D., P.D.B.); data collection (A.Kh.Yu., E.O.P.); data processing (Yu.N.D., A.Kh.Yu.); writing and editing of the manuscript (Yu.N.D., A.Kh.Yu., E.O.P., P.D.B.).

Corresponding authors

Correspondence to Yu. N. Davidyuk or P. D. Bregestovski.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2022, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2022, Vol. 108, No. 10, pp. 1379–1390https://doi.org/10.31857/S086981392210003X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davidyuk, Y.N., Yusupova, A.K., Petukhova, E.O. et al. A Test System for Monitoring the Genetic Purity of Transgenic Mouse Lines Expressing Chloride and Hydrogen Biosensor. J Evol Biochem Phys 58, 1664–1673 (2022). https://doi.org/10.1134/S0022093022050349

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093022050349

Keywords:

Navigation