Skip to main content
Log in

ASSESSING THE FREQUENCY DISPERSION INFLUENCE ON THE SOLITARY-WAVE INTERACTION WITH A CONSTANT SLOPING BEACH

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

This article focuses on the effect of frequency dispersion on the wave run-up height and the characteristics of the surface waves reflected from a coastal slope. Calculations are performed within the framework of nonlinear dispersive and nondispersive shallow water models using the original boundary conditions on a moving shoreline. A case study of the problem of solitary wave run-up on flat coastal slopes with parameters close to the characteristics of one of the Kamchatka bays shows that the nondispersive model overestimates the maximum run-up and amplitudes of the reflected waves by 10–20%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. O. I. Gusev, G. S. Khakimzyanov, and L. B. Chubarov, “Numerical Investigation of the Impact of Long Surface Waves on a Partially Submerged Fixed Non-Deformable Structure,"in Nonlinear waves—2021: All-Russian. Conf. with Int. Participation dedicated to the 75th anniversary of Corresponding Member of RAS V. M. Teshukov, Novosibirsk, March 2–4, 2021, p. 27. http://conf.nsc.ru/files/conferences/ nw2021/625257/abstract.pdf.

  2. E. Yu. Kamynin, V. V. Maksimov, I. S. Nudner, et al., “Interaction of a Solitary Wave with a Partially Submerged Fixed Structure," Fund. i Prikl. Gidrofiz., No. 4, 39–54 (2010).

    Google Scholar 

  3. X. Lu and K.-H. Wang, “Modeling a Solitary Wave Interaction with a Fixed Floating Body Using an Integrated Analytical-Numerical Approach," Ocean Engng. 109, 691–704 (2015).

    Article  Google Scholar 

  4. G. S. Khakimzyanov and D. Dutykh, “Long Wave Interaction with a Partially Immersed Body. Pt 1. Mathematical Models," Comm. Comput. Phys. 27 (2), 321–378 (2020).

    Article  Google Scholar 

  5. G. Khakimzyanov, D. Dutykh, Z. Fedotova, and O. Gusev, “Dispersive Shallow Water Waves. Theory, Modeling, and Numerical Methods," (Birkhäuser, Basel, 2020). (Lecture notes in geosystems mathematics and computing).

  6. S. C. Medeiros and S. C. Hagen, “Review of Wetting and Drying Algorithms for Numerical Tidal Flow Models," Intern. J. Numer. Methods Fluids 71, 473–487 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  7. D. Dutykh, T. Katsaounis, and D. Mitsotakis, “Finite Volume Schemes for Dispersive Wave Propagation and Runup," J. Comput. Phys. 230 (8), 3035–3061 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  8. F. Shi, J. T. Kirby, J. C. Harris, et al., “A High-Order Adaptive Time-Stepping TVD Solver for Boussinesq Modelling of Breaking Waves and Coastal Inundation," Ocean Model. 43/44, 36–51 (2021).

    ADS  Google Scholar 

  9. J. P. A. Pitt, C. Zoppou, and S. G. Roberts, “Solving the Fully Nonlinear Weakly Dispersive Serre Equations for Flows over Dry Beds," Intern. J. Numer. Methods Fluids 93, 24–43 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  10. V. G. Sudobicher and S. M. Shugrin, “Flow of Water in Dry Channels," Izv. SO AN SSSR. Ser. Tekhn. Nauk 13 (3), 116–122 (1968).

    Google Scholar 

  11. V. M. Lyatkher and A. N. Militeev, “Calculation of the Run-Up of Long Gravitational Waves on a Slope," Oceanology 14 (1), 37–42 (1974).

    Google Scholar 

  12. J. T. Kirby, F. Shi, B. Tehranirad, et al., “Dispersive Tsunami Waves in the Ocean: Model Equations and Sensitivity to Dispersion and Coriolis Effects," Ocean Model. 62, 39–55 (2013).

    Article  ADS  Google Scholar 

  13. D. Morichon, V. Roeber, M. Martin-Medina, et al., “Tsunami Impact on a Detached Breakwater: Insights from Two Numerical Models," J. Waterway, Port, Coastal Ocean Engng. 147 (2), 05021001 (2021).

    Article  Google Scholar 

  14. S. L. Gavrilyuk, V. Yu. Liapidevskii, and A. A. Chesnokov, “Spilling Breakers in Shallow Water: Applications to Favre Waves and to the Shoaling and Breaking of Solitary Waves," J. Fluid Mech. 808, 441–468 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Kazakova and G. Richard, “A New Model of Shoaling and Breaking Waves: One-Dimensional Solitary Wave on a Mild Sloping Beach," J. Fluid Mech. 862, 552–591 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  16. S. P. Bautin, S. L. Deryabin, A. F. Sommer, et al., “Use of Analytic Solutions in the Statement of Difference Boundary Conditions on a Movable Shoreline," Russ. J. Numer. Anal. Math. Model. 26 (4), 353–377 (2011).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Chubarov.

Additional information

Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, 2021, Vol. 62, No. 4, pp. 114-123. https://doi.org/10.15372/PMTF20210411.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, O.I., Khakimzyanov, G.S., Chubarov, L.B. et al. ASSESSING THE FREQUENCY DISPERSION INFLUENCE ON THE SOLITARY-WAVE INTERACTION WITH A CONSTANT SLOPING BEACH. J Appl Mech Tech Phy 62, 624–632 (2021). https://doi.org/10.1134/S0021894421040118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021894421040118

Keywords

Navigation