Skip to main content
Log in

A High-Performance Data-Acquisition and Control Module Based on a USB 3.0 Interface for a NIR Broadband Spectrometer

  • PHYSICAL INSTRUMENTS FOR ECOLOGY, MEDICINE, AND BIOLOGY
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The design and principle of operation of the module for data acquisition and control of a broadband near-IR spectrometer are described. It was developed as the main interface device in the system for visualizing intraocular structures using optical coherence tomography. The achieved performance characteristics of this module make it possible to create a spectral diagnostic optical coherence tomography system with a high resolution value of a few micrometers. The USB 3.0 interface is used as the main computer communication channel, thus providing the compactness, portability, and versatility of the diagnostic system. The data-acquisition system is capable of operating against the background of computationally complex asynchronous procedures for synthesizing a continuous flow of tomographic images in real time, due to which the visualization system can operate in an interactive mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Optical Coherence Tomography: Technology and Applications, Drexler, W. and Fujimoto, J.G., Eds., Cham: Springer, 2015. https://doi.org/10.1007/978-3-319-06419-2

    Google Scholar 

  2. Gelikonov, V.M. and Gelikonov, G.V., Radiophys. Quantum Electron., 2018, vol. 61, no. 2, p. 135. https://doi.org/10.1007/s11141-018-9877-4

    Article  ADS  Google Scholar 

  3. Gelikonov, G.V., Shilyagin, P.A., Ksenofontov, S.Yu., Terpelov, D.A., Gelikonov, V.M., and Moiseev, A.A., Proc. SPIE, 2020, vol. 11228, p. 112282V. https://doi.org/10.1117/12.2545966

    Article  Google Scholar 

  4. Ksenofontov, S.Yu., Shilyagin, P.A., Terpelov, D.A., Gelikonov, V.M., and Gelikonov, G.V., Front. Optoelectron., 2020, vol. 13, no. 4, p. 393. https://doi.org/10.1007/s12200-019-0951-0

    Article  Google Scholar 

  5. Fercher, A.F., J. Biomed. Opt., 1996, vol. 1, no. 2, p. 157. https://doi.org/10.1117/12.231361

    Article  ADS  Google Scholar 

  6. Michelson, A.A., Am. J. Sci., 1881, vol. 22, p. 120. https://doi.org/10.2475/ajs.s3-34.203.333

    Article  ADS  Google Scholar 

  7. Shilyagin, P.A., Ksenofontov, S.Yu., Moiseev, A.A., Terpelov, D.A., Matkivsky, V.A., Kasatkina, I.V., Mamaev, Yu.A., Gelikonov, G.V., and Gelikonov, V.M., Radiophys. Quantum Electron., 2018, vol. 60, no. 10, p. 769. https://doi.org/10.1007/s11141-018-9845-z

    Article  ADS  Google Scholar 

  8. Terpelov, D.A., Ksenofontov, S.Yu., Gelikonov, G.V., Gelikonov, V.M., and Shilyagin, P.A., Instrum. Exp. Tech., 2017, vol. 60, no. 6, p. 868. https://doi.org/10.1134/S0020441217060112

    Article  Google Scholar 

  9. Ksenofontov, S.Yu., Shilyagin, P.A., Terpelov, D.A., Novozhilov, A.A., Gelikonov, V.M., and Gelikonov, G.V., Instrum. Exp. Tech., 2020, vol. 63, no. 1, p. 126. https://doi.org/10.1134/S0020441220010054

    Article  Google Scholar 

  10. Gelikonov, G.V., Ksenofontov, S.Yu., Shilyagin, P.A., and Gelikonov, V.M., Radiophys. Quantum Electron., 2019, vol. 62, no. 3, p. 228. https://doi.org/10.1007/s11141-019-09971-0

    Article  ADS  Google Scholar 

  11. Matkivsky, V.A., Moiseev, A.A., Ksenofontov, S.Yu., Kasatkina, I.V., Gelikonov, G.V., Shabanov, D.V., Shilyagin, P.A., and Gelikonov, V.M., Front. Optoelectron., 2017, vol. 10, no. 3, p. 323. https://doi.org/10.1007/s12200-017-0736-2

    Article  Google Scholar 

  12. Ksenofontov, S.Yu., Moiseev, A.A., Matkivsky, V.A., Shilyagin, P.A., Vasilenkova, T.V., Gelikonov, V.M., and Gelikonov, G.V., Instrum. Exp. Tech., 2020, vol. 63, no. 5, p. 724. https://doi.org/10.1134/S0020441220040296

    Article  Google Scholar 

  13. Ksenofontov, S.Yu., Terpelov, D.A., Gelikonov, G.V., Shilyagin, P.A., and Gelikonov, V.M., Radiophys. Quantum Electron., 2019, vol. 62, no. 2, p. 151. https://doi.org/10.1007/s11141-019-09963-0

    Article  ADS  Google Scholar 

  14. Ksenofontov, S.Yu., Instrum. Exp. Tech., 2019, vol. 62, no. 3, pp. 317–323. https://doi.org/10.1134/S0020441219030072

    Article  Google Scholar 

Download references

Funding

This work was supported by the state assignment of the Institute of Applied Physics of the Russian Academy of Sciences (project no. 0030-2021-0013) in terms of the development and prototyping of electronic circuits and by the Russian Science Foundation (project no. 17-72-20249) in terms of the development of algorithms for asynchronous data acquisition and synthesis of OCT images in real time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Ksenofontov.

Additional information

Translated by N. Goryacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ksenofontov, S.Y., Kupaev, A.V., Vasilenkova, T.V. et al. A High-Performance Data-Acquisition and Control Module Based on a USB 3.0 Interface for a NIR Broadband Spectrometer. Instrum Exp Tech 64, 759–764 (2021). https://doi.org/10.1134/S0020441221040217

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221040217

Navigation