Skip to main content
Log in

A Flexible Rayleigh Wave Transducer for Surface Cracks Detection on Heterogeneous Composite Explosives

  • GENERAL EXPERIMENTAL TECHNIQUES
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

For heterogeneous explosives, it is of great importance to detect surface cracks to ensure structural integrity and reliability. With the advantages of high efficiency and good stability, a flexible angle beam wedge Rayleigh wave transducer is designed and manufactured. The flexible silicone rubber is utilized as the wedge material (~900 m s–1 of longitudinal wave velocity), which could not only meet the excitation condition of Rayleigh wave, but also make the transducer adequately attached to the curved surface. The transducer exhibits decent performance with good directivity and low attenuation. The experimental results show that the characterization of surface cracks could be realized through experimental analysis of the interaction mechanism between Rayleigh wave and surface cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Mares, J.O., Miller, J.K., Sharp, N.D., Moore, D.S., Adams, D.E., Groven, L.J., Rhoads, J.F. and Son, S.F., J. Appl. Phys., 2013, vol. 113, no. 8, p. 2499. https://doi.org/10.1063/1.4793495

    Article  Google Scholar 

  2. Banerjee, B. and Adams, D.O., Int. J. Solids Struct., 2004, vol. 41, no. 2, p. 481. https://doi.org/10.1016/j.ijsolstr.2003.09.016

    Article  Google Scholar 

  3. Drodge, D.R. and Williamson, D.M., J. Mater. Sci., 2016, vol. 51, no. 2, p. 668. https://doi.org/10.1007/s10853-013-7378-6

    Article  ADS  Google Scholar 

  4. Yong, T., Weibin, Z., Maoping, W., Zhanfeng, Y., Ying, H., and Jingming, L., Energ. Mater., 2004, vol. 12, no. 3, p. 174. http://dx.chinadoi.cn/10.3969/j.issn.1006-9941.2004.03.013.

  5. Peng, Z., Shulin, B., and Wenling, Z., Chin. J. High-Pressure Phys., 2003, vol. 17, no. 4, p. 319. http://dx.chinadoi.cn/10.3969/j.issn.1000-5773.2003.04.013.

    Google Scholar 

  6. Tittmann, B.R., Cohen-Ténoudji, F., Billy, M.D., Jungman, A., and Quentin, G., Appl. Phys. Lett., 1978, vol. 33, no. 1, p. 6. https://doi.org/10.1063/1.90148

    Article  ADS  Google Scholar 

  7. Weibin, L., Yaru, X., Xinlin, Q., and Zhanfeng, Y., Polym. Test., 2019, vol. 74, p. 63. https://doi.org/10.1016/j.polymertesting.2018.12.020

    Article  Google Scholar 

  8. Lee, F.W., Chai, H.K., and Lim, K.S., Sensors, 2016, vol. 16, no. 3, p. 337. https://doi.org/10.3390/s16030337

    Article  ADS  Google Scholar 

  9. Ruipeng, G., Jinghua, L., and Haitao, W., Trans. Nanjing Univ. Aeronaut. Astronaut., 2018, vol. 5, p. 858. http://dx.chinadoi.cn/10.16356/j.1005-1120.2018.05.858.

    Google Scholar 

  10. Hui, Z. and Shuqing, L., Ultrasonic Testing, Beijing: China Labor and Social Security Press, 2008, pp. 20−21.

    Google Scholar 

  11. Hassan, W. and Veronesi, W., Ultrasonics, 2003, vol. 41, no. 1, p. 41. https://doi.org/10.1016/S0041-624X(02)00393-1

    Article  Google Scholar 

  12. Shuzeng, Z., Xiongbing, L., Jeong, H., and Hongwei, H., Wave Motion, 2016, vol. 67, no. 1, p. 141. https://doi.org/10.1016/j.wavemoti.2016.08.007

    Article  MathSciNet  Google Scholar 

  13. Cunfu, H., Mingfang, Z., Yan, L., Peng, D., Huamin, Z., Xiucheng, L., Guorong, S., Zenghua, L., Jingpin, J., and Bin, W., J. Instrum., 2016, vol. 37, no. 8, p. 1713. http://dx.chinadoi.cn/10.19650/j.cnki.cjsi.2016.08.004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haining Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wu, B., Yang, Z. et al. A Flexible Rayleigh Wave Transducer for Surface Cracks Detection on Heterogeneous Composite Explosives. Instrum Exp Tech 64, 420–426 (2021). https://doi.org/10.1134/S0020441221030325

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221030325

Navigation