Skip to main content
Log in

A Passive Shield for the RED-100 Neutrino Detector

  • NUCLEAR EXPERIMENTAL TECHNIQUE
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract—

A combined passive shield of the RED-100 two-phase emission neutrino detector has been developed and built for suppressing the background of external γ rays and neutrons. The shield is composed of a 5‑cm-thick copper layer (the inner layer is adjacent to the detector) and a water layer with a total thickness of approximately 70 cm (including the water inside the copper shield). The Monte Carlo simulation of the shielding efficiency has been performed. The obtained attenuation factor of the copper shield for the γ-ray background has been experimentally verified in a laboratory test using a NaI(Tl) scintillator detector. The γ‑ray background rejection factor of the full shield has also been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Freedman, D.Z., Phys. Rev. D: Part. Fields, 1974, vol. 9, p. 1389. https://doi.org/10.1103/PhysRevD.9.1389

    Article  ADS  Google Scholar 

  2. Kopeliovich, V.B. and Frankfurt, L.L., JETP Lett., 1974, vol. 19, p. 145.

    ADS  Google Scholar 

  3. COHERENT Collab., Akimov, D., et al., Science, 2017, vol. 357, no. 6356, p. 1123. https://doi.org/10.1126/science.aao0990

    Article  ADS  Google Scholar 

  4. COHERENT Collab., Akimov, D., et al., First Detection of Coherent Elastic Neutrino-Nucleus Scattering on Argon, 2020. arXiv:2003.10630.

  5. Hakenmüller, J., Buck, C., Fülber, K., Heusser, G., Klages, T., Lindner, M., Lücke, A., Maneschg, W., Reginatto, M., Rink, T., Schierhuber, T., Solasse, D., Strecker, H., Wink, R., Zboøil, M., and Zimbal, A., Eur. Phys. J. C, 2019, vol. 79, p. 699. https://doi.org/10.1140/epjc/s10052-019-7160-2

    Article  ADS  Google Scholar 

  6. Kerman, S., Sharma, V., Deniz, M., Wong, H.T., Chen, J.-W., Li, H. B., Lin, S. T., Liu, C.-P., and Yue, Q., Phys. Rev. D, 2016, vol. 93, p. 113006. https://doi.org/10.1103/PhysRevD.93.113006

    Article  ADS  Google Scholar 

  7. Belov, V., Brudanin, V., Egorov, V., Filosofov, D., Fomina, M., Gurov, Y., Korotkova, L., Lubashevskiy, A., Medvedev, D., and Pritula, R., J. Instrum., 2015, vol. 10, p. 12011. https://doi.org/10.1088/1748-0221/10/12/P12011

    Article  Google Scholar 

  8. MINER Collab., Agnolet, G., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2017, vol. 853, p. 53. https://doi.org/10.1016/j.nima.2017.02.024

    Article  Google Scholar 

  9. Billard, J., Carr, R., Dawson, J., Figueroa-Feliciano, E., Formaggio, J.A., Gascon, J., Heine, S.T., Jesus, M.De., Johnston, J., Lasserre, T., Leder, A., Palladino, K.J., Sibille, V., Vivier, M., and Winslow, L., J. Phys. G: Nucl. Part. Phys., 2017, vol. 44, no. 10, p. 105101. https://doi.org/10.1088/1361-6471/aa83d0

    Article  ADS  Google Scholar 

  10. Strauss, R., Rothe, J., Angloher, G., Bento, A., Gütlein, A., Hauff, D., Kluck, H., Mancuso, M., Oberauer, L., Petricca, F., Pröbst, F., Schieck, J., Schönert, S., Seidel, W., and Stodolsky, L., Eur. Phys. J. C, 2017, vol. 77, article no. 506. https://doi.org/10.1140/epjc/s10052-017-5068-2

    Article  ADS  Google Scholar 

  11. CONNIE Collab., Aguilar-Arevalo, A., et al., Phys. Rev. D, 2019, vol. 100, p. 092005. https://doi.org/10.1103/PhysRevD.100.092005

    Article  Google Scholar 

  12. Dolgoshein, B.A., Lebedenko, V.N., and Rodionov, B.U., JETP Lett., 1970, vol. 11, p. 351.

    ADS  Google Scholar 

  13. LUX Collab., Akerib, D.S., et al., Phys. Rev. Lett., 2017, vol. 118, p. 021303. https://doi.org/10.1103/PhysRevLett.118.021303

    Article  ADS  Google Scholar 

  14. XENON Collab., Aprile, E., et al., Phys. Rev. Lett., 2018, vol. 121, p. 111302. https://doi.org/10.1103/PhysRevLett.121.111302

    Article  ADS  Google Scholar 

  15. PandaX-II Collab., Cui, X., et al., Phys. Rev. Lett., 2017, vol. 119, p. 181302. https://doi.org/10.1103/PhysRevLett.119.181302

    Article  ADS  Google Scholar 

  16. DarkSide Collab., Agnes, P., et al., Phys. Rev. D, 2018, vol. 98, p. 102006. https://doi.org/10.1103/PhysRevD.98.102006

    Article  ADS  Google Scholar 

  17. DUNE Collab., Cuesta, C., et al., Status of ProtoDUNE Dual Phase, 2019. ArXiv: 1910.10115.

  18. Akimov, D.Yu., Belov, V.A., Bolozdynya, A.I., Efremenko, Yu.V., Konovalov, A.M., Kumpan, A.V., Rudik, D.G., Sosnovtsev, V.V., Khromov, A.V., and Shakirov, A.V., Phys.-Usp., 2019, vol. 62, no. 2, p. 166. https://doi.org/10.3367/UFNe.2018.05.038356

    Article  ADS  Google Scholar 

  19. RED-100 Collab., Akimov, D., et al., J. Instrum., 2020, vol. 15, p. 02020. https://doi.org/10.1088/1748-0221/15/02/P02020

    Article  Google Scholar 

  20. Kneißl, R., Caldwell, A., Du, Q., Empl, A., Gooch, C., Liu, X., Majorovits, B., Palermo, M., and Schulz, O., Astropart. Phys., 2019, vol. 111, p. 87. https://doi.org/10.1016/j.astropartphys.2019.03.006

    Article  ADS  Google Scholar 

  21. Anan'ev, V.V., Bolozdynya, A.I., Vlasik, K.F., Dmitrenko, V.V., Efremenko, Yu.V., Uteshev, Z.M., Sosnovtsev, V.V., Tolstukhin, I.A., Shakirov, A.V, Shafigullin, R.R., and Khromov, A.V., Instrum. Exp. Tech., 2015, vol. 58, no. 4, p. 581. https://doi.org/10.1134/S0020441215030161

    Article  Google Scholar 

  22. Alekseev, I., Belov, V., Brudanin, V., Danilov, M., Egorov, V., Filosofov, D., Fomina, M., Hons, Z., Kazartsev, S., Kobyakin, A., Kuznetsov, A., Machikhiliyan, I., Medvedev, D., Nesterov, V., Olshevsky, A., et al., J. Instrum., 2016, vol. 11, p. 11011. https://doi.org/10.1088/1748-0221/11/11/P11011

    Article  Google Scholar 

  23. https://www.ortec-online.com/products/application-software/maestro-mca.

  24. GEANT4 Collab., Agostinelli, S., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2003, vol. 506, p. 250. https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

  25. GEANT4 Collab., Allison, J., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2016, vol. 835, p. 186. https://doi.org/10.1016/j.nima.2016.06.125

    Article  Google Scholar 

  26. Kozlov, A. and Chernyak, D., Nucl. Instrum. Methods Phys. Res., Sect. A, 2018, vol. 903, p. 162. https://doi.org/10.1016/j.nima.2018.07.006

    Article  Google Scholar 

  27. Chazal, V., Brissot, R., Cavaignac, J.F., Chambon, B., Jesus, M.De., Drain, D., Giraud-Heraud, Y., Pastor, C., Stutz, A., and Vagneron, L., Astropart. Phys., 1998, vol. 9, p. 163. https://doi.org/10.1016/S0927-6505(98)00012-7

    Article  ADS  Google Scholar 

  28. Busanov, O.A., Etezov, R.A., Gavriljuk, Yu.M., Gezhaev, A.M., Kazalov, V.V., Kornoukhov, V.N., Kuzminov, V.V., Moseev, P.S., Panasenko, S.I., Ratkevich, S.S., and Yakimenko, S.P., EPJ Web Conf., 2014, vol. 65, p. 03002. https://doi.org/10.1051/epjconf/20136503002

Download references

ACKNOWLEDGMENTS

We are grateful to Yu.M. Gavrilyuk, V.V. Kazalov, and V.V. Kuz’minov measurements of radiation-shield samples at the Baksan Neutrino Observatory of the Institute for Nuclear Research .

Funding

We express our gratitude to JSC Science and Innovations (Scientific Division of the Rosatom State Corporation), the Russian Science Foundation (contract no. 18-12-00135 dated April 12, 2018) for the cooperation and support in carrying out the experiment at the Kalinin NPP, the Competitiveness Enhancement Program of National Research Nuclear University MEPhI (contract no. 02.a03.21.0005 dated August 27, 2013,), and the Ministry of Science and Higher Education of the Russian Federation (Fundamental Properties of Elementary Particles and Cosmology Project no. 0723-2020-0041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Bolozdynya.

Additional information

Translated by N. Goryacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akimov, D.Y., Aleksandrov, I.S., Belov, V.A. et al. A Passive Shield for the RED-100 Neutrino Detector. Instrum Exp Tech 64, 202–208 (2021). https://doi.org/10.1134/S0020441221020093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441221020093

Navigation