Skip to main content
Log in

A High-Frequency Pumping Source for Metal Vapor Active Media

  • ELECTRONICS AND RADIO ENGINEERING
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The results of the development of a high-frequency pumping source for active media on self-terminating transitions in metal vapors, which allows operation in the mode of a low energy deposition into the discharge, are presented. Reduced energy deposition into the discharge is provided due to the pumping of the active medium with short-duration high-voltage pulse (3 kV, 15 А, 40–60 ns). A record-high radiation-pulse repetition rate of 200 kHz in the active medium of copper bromide vapors was obtained when operating in the superradiance mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Trudy FIAN (Scientific Works of Lebedev Physical Institute USSR Academy of Sciences), vol. 206: Opticheskie sistemy s usilitelyami yarkosti (Optical Systems with Brightness Amplifiers), Petrash, G.G., Ed., Moscow: Nauka, 1991.

  2. Evtushenko, G.S., Trigub, M.V., Gubarev, F.A., Evtushenko, T.G., Torgaev, S.N., and Shiyanov, D.V., Rev. Sci. Instrum., 2014, vol. 85, no. 85, p. 033111. https://doi.org/10.1063/1.4869155

    Article  ADS  Google Scholar 

  3. Kuznetsov, A.P., Buzhinsij, R.O., Gubskii, K.L., Savojlov, A.S., Sarantsev, S.A., and Terekhin, A.N., Plasma Phys. Rep., 2010, vol. 36, no. 5, p. 428.

    Article  ADS  Google Scholar 

  4. Buzhinskij, O.I., Vasiliev, N.N., Moshkunov, A.I., Slivitskaya, I.A., and Slivitsky, A.A., Fusion Eng. Des., 2002, vol. 60, no. 2, p. 141. https://doi.org/10.1134/S1063780X10050090

    Article  Google Scholar 

  5. Abramov, D.V., Arakelian, S., Galkin, A.F., Klimovskii, I.I., Kucherik, A., and Prokoshev, V.G., Laser Phys., 2005, vol. 15, no. 9, p. 1313.

    Google Scholar 

  6. Nekhoroshev, V.O., Fedorov, V.F., Evtushenko, G.S., and Torgaev, S.N., Quantum Electron., 2012, vol. 42, no. 10, p. 877. https://doi.org/10.1070/QE2012v042n10ABEH014897

    Article  Google Scholar 

  7. Soldatov, A.N., Yudin, N.A., Vasilieva, A.V., Kolmakov, E.A., Polunin, Yu.P., and Kostyrya, I.D., Quantum Electron., 2012, vol. 42, no. 2, p. 31.

    Article  ADS  Google Scholar 

  8. Vasnev, N.A., Trigub, M.V., and Evtushenko, G.S., Atmos. Oceanic Opt., 2019, vol. 32, no. 4, p. 483. https://doi.org/10.1134/S1024856019040171

    Article  Google Scholar 

  9. Boichenko, A.M., Evtushenko, G.S., Nekhoroshev, V.O., Shiyanov, D.V., and Torgaev, S.N., Phys. Wave Phenom., 2015, vol. 23, no. 1, p. 1. https://doi.org/10.3103/S1541308X1501001X

    Article  ADS  Google Scholar 

  10. Trigub, M.V., Shiyanov, D.V., and Vlasov, V.V., Proc. 15th Int. Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, Novosibirsk, 2014, p. 301. https://doi.org/10.1109/EDM.2014.6882534

  11. Trigub, M.V., Evtushenko, G.S., Torgaev, S.N., Shiyanov, D.V., and Evtushenko, T.G., Opt. Commun., 2016, vol. 376, p. 81. https://doi.org/10.1016/j.optcom.2016.04.039

    Article  ADS  Google Scholar 

  12. Gubarev, F.A., Sukhanov, V.B., Shiyanov, D.V., and Evtushenko, G.S., Atmos. Oceanic Opt., 2008, vol. 21, no. 1, p. 73.

    Google Scholar 

  13. Shiyanov, D.V., Evtushenko, G.S., Sukhanov, V.B., and Fedorov, V.F., Quantum Electron., 2002, vol. 32, no. 8, p. 680. https://doi.org/10.1070/QE2002v032n08ABEH002270

    Article  ADS  Google Scholar 

  14. Sukhanov, V.B. and Tatur, V.V., Izv. Tomsk.Politekh. Univ., 2008, vol. 312, no. 2, p. 108.

    Google Scholar 

  15. Torgaev, S.N., Trigub, M.V., and Gubarev, F.A., Proc. 12th Int. Conference and Seminar on Micro/Nanotechnologies and Electron Devices, Erlagol, June 30–July 4, 2011, p. 411. https://doi.org/10.1109/EDM.2011.6006984

  16. Evtushenko, G.S., Kashaev, V.Yu., Parshina, N.V., Sukhanov, V.B., Tatur, V.V., Trifonov, A.N., and Fedorov, V.F., Atmos. Oceanic Opt., 2000, vol. 13, no. 3, p. 265.

    Google Scholar 

  17. Ivanov, E.V., Moshkunov, S.I., and Khomich, V.Yu., Instrum. Exp. Tech., 2006, vol. 49, no. 1, p. 80. https://doi.org/10.1134/S002044120601009X

    Article  Google Scholar 

  18. Torgaev, S.N., Evtushenko, G.S., Yaroslavtsev, E.V., Nekhoroshev, V.O., Musorov, I.S., and Trigub, M.V., RF Patent 2672180, Byull. Izobret., 2018, no. 31.

  19. Zheng, S. and Keane, J. https://www.bnl.gov/isd/documents/79916.pdf.

  20. STMicroelectronics— N-Channel 950 V, 0.275 Ω Typ., 17.5 A MDmesh K5 Power MOSFET in a TO-220 Package. https://www.st.com/en/power-transistors/stp20n95k5.html.

  21. Kulagin, A.E., Torgaev, S.N., Evtushenko, G.S., and Trigub, M.V., Russ. Phys. J., 2017, vol. 60, no. 11, p. 1987. https://doi.org/10.1007/s11182-018-1312-y

    Article  Google Scholar 

  22. Evtushenko, G.S., Torgaev, S.N., Trigub, M.V., Shiyanov, D.V., Evtushenko, T.G., and Kulagin, A.E., Opt. Commun., 2017, vol. 383, p. 148. https://doi.org/10.1016/j.optcom.2016.09.001

    Article  ADS  Google Scholar 

  23. Torgaev, S.N., Kulagin, A.E., Evtushenko, T.G., and Evtushenko, G.S., Opt. Commun., 2019, vol. 440, p. 146. https://doi.org/10.1016/j.optcom.2019.01.061

    Article  ADS  Google Scholar 

Download references

Funding

The studies on the development of a high-frequency excitation sources for functional converters of the optical signals was supported by the Russian Science Foundation (project no. 19-79-10096); the work on the manufacture of active elements and experiments was performed within the framework of State Jobs of the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences (no. AAAA-A17-117021310150-0), and the Ministry of Science and Higher Education of Russia (no. 730000F.99.1BV 15АА00003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Torgaev.

Additional information

Translated by A . Seferov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torgaev, S.N., Ogorodnikov, D.N., Musorov, I.S. et al. A High-Frequency Pumping Source for Metal Vapor Active Media. Instrum Exp Tech 63, 62–67 (2020). https://doi.org/10.1134/S002044122001008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002044122001008X

Navigation